Supporting Information

Solution-processed tungsten oxide with Ta⁵⁺ doping enhances the hole selective transport for crystalline silicon solar cells

Dan Liu^a, Penghui Ren^a, Di Zhao^a, Songyu Li^a, Jianqiao Wang^a, Hang Zhou^a, Wei Liu^b, Yuheng Zeng^b, Xuegong Yu^c, Peng Wang^{a*}, Can Cui^{a*}

^aZhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China ^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sci ences, Ningbo 315201, China ^cState Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

E-mail: pengwang@zstu.edu.cn, cancui@zstu.edu.cn

The DFT calculation

All models used for calculation in this work were built using Materials Studio 2020 and visualized using VESTA. First-principles calculations based on density functional theory (DFT) were carried out using the Vienna Ab initio Simulation Package (VASP). The Perdew-Burke-Ernzerhof (PBE) functional was employed to describe the exchange-correlation interaction. The plane-wave cut-off energy of 400 eV, and Γ -centered k-mesh with k-spacing of 0.02 Å⁻³ in the Brillouin zone were used for geometry optimization and self-consistent calculation. The convergence criteria for total energy were set to 10⁻⁸ eV/atom. The van der Waals interaction was considered using DFT-D3 method. Based on the model, we calculated the free energy, ELF and DOS of the system as W⁵⁺ or W⁶⁺ is replaced by Ta⁵⁺, respectively. The more negative the free energy of the system, the higher probability the substitution takes place.

Figure S1. The XRD pattern of undoped WO_{3-x} film annealed at 100 °C.

Figure S2. The EDS mapping images of the undoped WO_{3-x} films (a, b) before and after (c, d) annealing at 100°C.

Figure S3. The XPS spectrum of the undoped WO_{3-x} film after annealing at 100°C.

Figure S4. AFM measurements employed to estimate the thickness of undoped WO_{3-x} films. (a) The schematic diagram of AFM measurements. (b) The AFM images of WO_{3-x} films with different thicknesses. (c) Height plots showing the thicknesses of WO_{3-x} films.

Figure S5. Illuminated J-V curves of heterojunction devices with WO_{3-x} films doped

with ions of different valence states (Mo $^{6+},\,Ta^{5+},\,Nb^{5+},\,Sn^{4+}).$

Figure S6. Device performance statistics with the structure of p-Si/Ag, p-Si/WO_{3-x}/Ag and p-Si/Ta⁵⁺(1%):WO_{3-x}/Ag.

Figure S7. (a) The operational stability of the solar cells with the structure of p-Si/Au/Ag, p-Si/WO_{3-x}/Au/Ag and p-Si/Ta⁵⁺(1%):WO_{3-x}/Au/Ag measured under continuous light illumination (100 mW/cm²) at the temperature of 40 °C in air. (b) Thermal stability of the devices at different temperatures in air.

Figure S8. XPS spectra of Ta 4f orbitals of $Ta^{5+}(1\%)$:WO_{3-x} films.

Figure S9. XPS spectra of W 4f orbitals of undoped and 1% Ta^{5+} doped WO_{3-x} films.

Figure S10. Fitted bandgaps of undoped and 1% Ta^{5+} doped WO_{3-x} films.

Thickness	V _{OC}	$J_{ m SC}$	FF	PCE
(nm)	(mV)	(mA/cm ²)	(%)	(%)
0	560.9	37.6	58.6	12.4
3	569.9	38.5	63.4	13.9
4	570.9	38.6	63.6	14.0
6	573.6	38.7	68.7	15.3
9	583.5	39.0	70.2	16.0
13	586.4	38.6	68.4	15.5

Table S1 Output parameters of WO_{3-x}/p -Si heterojunction solar cells with different film thicknesses.

Table S2 Output parameters of WO_{3-x}/p -Si heterojunction solar cells with different

ion doping.

Film	$V_{\rm OC}~({\rm mV})$	$J_{\rm SC}~({ m mA/cm^2})$	FF (%)	PCE (%)
WO _{3-x}	582.3	39.2	69.6	15.9
Mo ⁶⁺ :WO _{3-x}	576.8	39.8	71.6	16.5
Ta ⁵⁺ :WO _{3-x}	603.1	39.8	73.0	17.5
Nb ⁵⁺ :WO _{3-x}	591.7	39.8	70.2	16.5
Sn ⁴⁺ :WO _{3-x}	583.2	39.3	69.4	15.9

Parameters	p-Si	WO _{3-x}	Ta ⁵⁺ :WO _{3-x}
Layer thickness (cm)	1.5×10 ⁻²	1×10-6	1×10-6
Doping concentration (cm ⁻³)	$N_a = 1 \times 10^{14}$	$N_d = 1 \times 10^{17}$	$N_d = 1 \times 10^{15}$
Relative dielectric constant	11.9	10	10
Electron affinity (eV)	4.05	4.64	4.69
Band gap (eV)	1.124	3.03	3.10
Optical band gap (eV)	1.124	3.03	3.10
Effective conduction band	2.846×10 ¹⁹	5.0×10 ²⁰	5.0×10 ²⁰
density (cm ⁻³)			
Effective valence band	2.685×10 ¹⁹	5.0×10 ²⁰	5.0×10 ²⁰
density (cm ⁻³)			
Electron mobility (cm ² /Vs)	1041	10	10
Hole mobility (cm ² /Vs)	412.9	1	1

Table S3. Simulation parameters of WO_{3-x}/p -Si heterojunction without and with Ta^{5+} doping.

The *film thickness*, *band gap*, *optical band gap* and *electron affinity* are obtained from the experimental results. The other simulation parameters of Table S3 are cited from the references of H. Mehmood et al., *Renew. Energy*, 2022, **183**, 188-201; R. A. Vijayan et al., *IEEE J. Photovolt.*, 2018, **8**, 473-482.