Self-assembly of poly(ionic liquid) block copolymer based dielectrics on semiconductor formation and performance.

Supporting Information

Laura E. Dickson¹, Samantha Brixi¹, Chase L. Radford², Joseph G. Manion¹, Timothy L. Kelly² and Benoît H. Lessard^{1,3}

- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
- Department of Chemistry, University of Saskatchewan, Saskatchewan, Saskatchewan S7N 5C9, Canada
- 3. School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave. Ottawa, Ontario K1N 6N5, Canada.

*Corresponding author: benoit.lessard@uottawa.ca

Polymer ID ^a	Anion	σ (S cm ⁻²)	$\frac{\overline{M}_{n^b}}{\left[kg \ mol^{-1}\right]}$	${ar {D}} \left[{M_w / M_n} ight]$	F_{STY}^{c}	F_{CMS}_{c}	F _{PEGMA}	R _{CMS/PEGMA}
$S_{-b_{-}}(V25_{-r_{-}})$	TFSI-	3.6×10^{-8}	-					
P75)	BF_4^-	-	28.0	1.07	0.95	0.02	0.03	0.64
	PF_{6}							
$S_{-}b_{-}(V50_{-}r_{-})$	TFSI ⁻	3.4×10^{-7}						
P50)	BF_4	7.9×10^{-8}	35.9	1.23	0.67	0.18	0.15	1.27
	PF_6^-	4.1×10^{-9}						
S h (V75 r	TFSI ⁻	1.7×10^{-7}						
D_{25}	BF_4	1.2×10^{-8}	31.4	1.12	0.74	0.20	0.06	3.17
F 23)	PF_6^-	5.8×10^{-11}						
S h (V100 m	TFSI-	1.4×10^{-9}						
DO)	BF_4	4.6×10^{-9}	39.6	1.17	0.70	0.30	-	-
r 0)	PF_6^-	7.4×10^{-11}						

Table S1. Physical properties of poly(S)-*b*-poly(VBBI⁺ [X⁻]-*r*-PEGMA) block copolymers (X = TFSI⁻, BF₄⁻, or PF₆⁻).

^a The polymer names are defined as S-*b*-(VX-*r*-PY) where X/Y = the target ratio of chloromethylstyrene (CMS) (converted to VBBI⁺ after initial polymerization) versus poly(ethylene glycol) methyl ether methacrylate (PEGMA) used in the synthesis of the prepolymer. The polymer synthesis and characterization data in this table are initially reported in Peltekoff *et al.*⁴¹

^b The molecular weight of the polystyrene block is identical for all polymers, at 22.5 kg mol⁻¹.

^c Molar composition of monomer unit determined by ¹H NMR. STY = styrene, CMS = chloromethyl styrene, PEGMA = poly(ethylyene glycol) methyl ether methacrylate.

^d Ratio of CMS to PEGMA on a molar basis in the second block.

Table S2. Contact angle of deionized water on P(NDI2OD-T2) cast on quartz and diiodomethane on Si. Averages are presented plus/minus the standard deviation of 3 individual measurements.

Substrate	Contact Angle (°)
Si	93.62 ± 1.70
P(NDI2OD-T2) cast on	46.00 ± 2.88
quartz	

Polymer	Thickness (nm)	Roughness (nm)
	$\mathbf{BF_{4}^{-}}$	
S-b-(V100-r-P0)	860.4 ± 57.4	62.7 ± 15.2
S-b-(V75-r-P25)	905.6 ± 44.0	52.3 ± 11.2
S-b-(V50-r-P50)	642.1 ± 101.8	37.9 ± 6.7
S-b-(V25-r-P75)	561.0 ± 77.3	38.5 ± 8.5
	PF ₆ -	
S-b-(V100-r-P0)	475.5 ± 69.2	89.2 ± 7.7
S-b-(V75-r-P25)	569.0 ± 69.0	29.9 ± 27.7
S-b-(V50-r-P50)	564.4 ± 41.5	39.2 ± 20.2
S-b-(V25-r-P75)	528.7 ± 50.2	52.2 ± 15.4
	TFSI-	
S-b-(V100-r-P0)	385.4 ± 44.1	25.6 ± 9.0
S-b-(V75-r-P25)	396.6 ± 37.9	23.1 ± 8.7
S-b-(V50-r-P50)	397.0 ± 34.4	45.0 ± 29.8
S-b-(V25-r-P75)	531.3 ± 65.2	22.9 ± 8.1

Table S3. PIL gating layer thickness and roughness determined by profilometry. Averages are presented plus/minus the standard deviation of 6 individual measurements.

Table S4. Extracted d-spacing data from the azimuthally-integrated diffraction patterns at the three diffraction peaks, determined by GIWAXS.

Polymer	d ₁₀₀ (Å)	d ₂₀₀ (Å)	d ₃₀₀ (Å)	d ₀₁₀ (Å)
	В	5F ₄ -		
S-b-(V100-r-P0)	14.29	8.75	6.65	2.99
S-b-(V75-r-P25)	14.29	NA	6.83	3.00
S-b-(V50-r-P50)	14.29	NA	6.71	2.98
S-b-(V25-r-P75)	14.29	8.82	6.98	3.01
	Р	F ₆ -		
S-b-(V100-r-P0)	14.07	NA	6.83	2.99
S-b-(V75-r-P25)	14.29	NA	6.69	3.01
S-b-(V50-r-P50)	14.29	9.16	6.78	3.01
S-b-(V25-r-P75)	14.29	9.16	6.78	3.00
	T	FSI-		
S-b-(V100-r-P0)	13.88	NA	6.79	3.02
S-b-(V75-r-P25)	14.07	9.24	6.69	3.01
S-b-(V50-r-P50)	13.88	9.06	6.69	3.03
S-b-(V25-r-P75)	14.07	9.16	6.79	3.02
	F ₁₆ Cu	Pc on Si		
-	14.07	9.24	6.88	3.06

$\begin{array}{c c} & BF_4^- \\ \hline S-b-(V100-r-P0) & 0.052 \\ S-b-(V75-r-P25) & 0.052 \\ S-b-(V50-r-P50) & 0.046 \\ S-b-(V25-r-P75) & 0.052 \\ \hline \end{array}$
S-b-(V100-r-P0)0.052S-b-(V75-r-P25)0.052S-b-(V50-r-P50)0.046S-b-(V25-r-P75)0.052
S-b-(V75-r-P25)0.052S-b-(V50-r-P50)0.046S-b-(V25-r-P75)0.052
S-b-(V50-r-P50)0.046S-b-(V25-r-P75)0.052
S-b-(V25-r-P75) 0.052
PF ₆ ⁻
S-b-(V100-r-P0) 0.052
S-b-(V75-r-P25) 0.052
S-b-(V50-r-P50) 0.052
S-b-(V25-r-P75) 0.052
TFSI-
S-b-(V100-r-P0) 0.059
S-b-(V75-r-P25) 0.078
S-b-(V50-r-P50) 0.078
S-b-(V25-r-P75) 0.046
F ₁₆ CuPc on Si
- 0.026

Table S5. Full width half maxima of the (100) diffraction peak from the azimuthally integrated diffraction patterns determined by GIWAXS.

Figure S1. (a-c) Sample output curves for OTFT devices fabricated with F_{16} CuPc on thin films of poly(S)-b-poly(VBBI+[PF₆⁻]-r-PEGMA) block copolymers, with varying PEGMA/VBBI+ ratios of (a) S-b-(V100-r-P0), (b) S-b-(V75-r-P25), and (c) S-b-(V50-r-P50). (d-f) Sample output curves for OTFT devices fabricated with F_{16} CuPc and thin films of poly(S)-b-poly(VBBI+[BF₄⁻]-r-PEGMA) block copolymers, with varying PEGMA/VBBI+ ratios of (d) S-b-(V100-r-P0), (e) S-b-(V75-r-P25), and (f) S-b-(V50-r-P50). (g-i) Sample output curves for OTFT devices fabricated with F_{16} CuPc and thin films of poly(S)-b-poly(VBBI+[TFSI⁻]-r-PEGMA) block copolymers, with varying PEGMA/VBBI+ ratios of (d) S-b-(V100-r-P0), (e) S-b-(V75-r-P25), and (f) S-b-(V50-r-P50). (g-i) Sample output curves for OTFT devices fabricated with F_{16} CuPc and thin films of poly(S)-b-poly(VBBI+[TFSI⁻]-r-PEGMA) block copolymers, with varying PEGMA/VBBI+ ratios of (g) S-b-(V100-r-P0), (h) S-b-(V75-r-P25), and (i) S-b-(V50-r-P50).

Figure S2. Grazing-incidence wide-angle X-ray scattering patterns of F_{16} CuPc on PEGMA loading of (a) 0%, (b) 25%, (c) 50%, and (d) 75% for the PF_6^- .

Figure S3. Grazing-incidence wide-angle X-ray scattering patterns of F_{16} CuPc on PEGMA loading of (a) 0%, (b) 25%, (c) 50%, and (d) 75% for the TFSI⁻.

Figure S4. Pole figures for the (100) diffraction peak (0.25 Å⁻¹ < q < 0.55 Å⁻¹) with Gaussian fits of F_{16} CuPc on various PILs for (a) PF_{6}^{-} , (b) TFSI⁻, and (c) BF_{4}^{-} .

Figure S5. (a) 2D Grazing-incidence wide-angle X-ray scattering pattern and (b) azimuthally integrated linecut of F_{16} CuPc on Si. Integration occurs from $-83^{\circ} < \chi < -1^{\circ}$ and $0.12 \text{ Å}^{-1} < q < 2.3 \text{ Å}^{-1}$ to account for the Yoneda peak.

Figure S6. Grazing-incidence wide-angle X-ray scattering patterns of the PILs with different PEGMA/VBBI+ ratios and counterions.

Figure S7. Grazing-incidence wide-angle X-ray azimuthally integrated diffraction patterns of the PILs with different PEGMA/VBBI+ ratios and the counterion (a) PF_6^- , (b) TFSI⁻, and (c) BF_4^- . Integration occurs from $-83^\circ < \chi < -1^\circ$ and $0.12 \text{ Å}^{-1} < q < 2.3 \text{ Å}^{-1}$ to account for the Yoneda peak.

Figure S8. Sample microscopy image with x50L magnification of the sample map area before (a) and after (b) polarized maps were taken for S-*b*-(V75-*r*-P25) and the counterion PF_6^- .

Figure S9. Sample contact angle images of (a) deionized water on P(NDI2OD-T2) cast on quartz and (b) diiodomethane on Si. Actual contact angle values are reported in **Table S2**.

Figure S10. Grazing-incidence wide-angle X-ray scattering patterns of (a) pure Si and (b) SiO_2 thermally grown on Si.

Figure S11. PIL gating layer thickness and roughness determined by profilometry (from Table S3).