Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

> **Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024**

Modulation Acceptor of Covalent Organic Frameworks: The Optimization of

Intramolecular and Interfacial Charge Transfer Processes

Ziang Song^a, Yujun Xie^a, Xiaojuan Song^a, Jianing Tang^a, Jinfeng Wang^{*a}, Ben Zhong Tang^{*a, c} and

Zhen Li*a, b, ^d

Affiliations:

^a Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China

b Joint School of National University of Singapore and Tianjin University, International Campus of

Tianjin University Binhai New City, Fuzhou, Fujian, 350207, China

^c School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.

^d Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry,

Wuhan University, Wuhan, Hubei, 430072, China

Emails: jinfeng.wang@tju.edu.cn, tangbenz@cuhk.edu.cn, lizhen@whu.edu.cn.

Table of Contents

Section I. Materials and Characterization

1. Materials

All reagents and solvents were purchased from commercialsources and used directly without further purification.

2. General characterization

The¹H and ¹³C NMR were obtained with 400 MHz Bruker Ascend 400 MHz NMR spectrometer. High resolution mass spectrometry (HRMS) data were collected on RDa time of flight Mass Detector (Waters, USA) coupled with ACQUITY UPLC (Waters, USA). The Solid-state nuclear magnetic resonance (¹³C CP/MAS NMR) spectra were obtained with a JEOL JNM ECZ600R. The Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku MiniFlex600 diffractometer equipped with Cu/Kα radiation (λ = 1.5418 Å) under a scan rate of 10 degree/min. The Fourier transform infrared spectroscopy (FT-IR) spectra were performed on ThermoFisher Scientific Nicolet IN10 in the frequency range of 674-4000 cm⁻¹, using ATM mode. The X-ray photoelectron spectroscopy (XPS) spectra was measured by using ThermoFisher Scientific EscaLab 250 xi. Scanning electron microscopy (SEM) images was performed on HITACHI SU8010 with an accelerating voltage of 12.0 kV. Transmission electron microscopy (TEM) images were recorded on a TecnaiG2F20 electron microscope (200 kV) equipped with slow scan CCD using cold cathode field emission as the gun. The nitrogen adsorption-desorption isotherm measurements were carried out using a Micromeritics ASAP2460 with extra-high pure gases. Before the gas adsorption measurements, the samples(80 mg) were activated and degassed at 120 °C for 12 h. The resulting samples were then used for gas adsorption measurements from 0 to 1 atm at 77 K. The Brunauer-Emmett Teller (BET) surface area and total pore volume were calculated from the N_2 sorption isotherms, and the Density Functional Theory (DFT) pore size distribution was calculated based on the N_2 sorption isotherm by using an equilibrium model and assuming a cylindrical pore geometry. Thermogravimetric analysis (TGA) was evaluated by NETZSCH TG 209F3 analyzer over the temperature range from 40 to 800 °C in N₂ with a heating rate of 10°C/min. Solid-state UV-Vis DRS spectra of the COF powders were measured on a Shimadzu UV-3600 spectrometer. Photoluminescence (PL) spectra and time-correlated single photon counting measurements were collected on Edinburgh Instruments FLS1000 fluorescence spectrophotometer.

3. Photocatalytic measurements

Photocatalytic hydrogen evolution measurements were carried out on a closed gas system equipped with a top-irradiation-type vessel. Typically, 5 mg of COFs powder was ultrasonically dispersed in an aqueous solution (100 mL) containing ascorbic acid (0.1 M) as the sacrificial agent, and corresponding content of $H_2PtCl_6·6H_2O$ as Pt precursor. The air in the system was removed completely by bubbling N_2 for 30 min before 300 W Xe lamp irradiation. The amount of H₂ evolved was determined by gas chromatography (Shimadzu GC-2014C, thermal conductivity detector (TCD), N_2 carrier).

4. The apparent quantum efficiency (AQE) measurements

 n_{app}

The AQE for hydrogen evolution was measured under the illumination of a 300 W Xe lamp equipped with different band-pass filters (365 nm, 420 nm and 500 nm). The light densities (mW·cm⁻²) were measured based on previous reports^{1,2} and the densities of each monochromatic wavelength are 3.88, 8.13, 16.51 mW/cm², respectively. The irradiation area was a circular area with a radius of 3 cm. The calculation formula is as follows:

$$
= \frac{Number\ of\ reacted\ electrons}{Number\ of\ incident\ electrons} \times 100\% = \frac{2 \times M \times N_A}{S \times P \times t} \times 100\% = \frac{2}{\lambda}
$$

100%

Where, *M* is the amount of H₂ molecules (mol), N_A is Avogadro constant (6.022 ×10²³ mol⁻¹), *h* is the Planck constant (6.626 \times 10⁻³⁴ J·s), *c* is the speed of light (3 \times 10⁸ m·s⁻¹), *S* is the irradiation area (cm²), P is the density of irradiation light (W·cm⁻²), t is the photoreaction time (s), λ is the wavelength of the monochromatic light (nm).

5. Photocurrents and photoelectrochemical measurements

All of the photoelectrochemical measurements were obtained on an electrochemical workstation (CHI660E, CH Instrument Corp, Shanghai) using a standard three-electrode cell at room temperature under irradiation of a 300 W Xe lamp (Perfect Light PLSSXE 300+/UV, λ > 420 nm, 100 mW·cm⁻²). The FTO glass (1×2 cm²) coated with COFs (effective area of 1×1 cm²) as the photoelectrode, Pt sheet electrode as the counter electrode, and an Ag/AgCl electrode as the reference electrode. The three electrodes were immersed in a quartz cell filled with $Na₂SO₄$ solution (0.2 M). The Na₂SO₄ electrolyte was purged with N_2 for 1 h before the measurements. For photocurrent intensity response experiments, the parameters are set as follows: initial voltage was 0.8 V, test time was 420 s, static time was 5 s, and the sensitivity was 10^{-6} A \cdot V⁻¹. For electrochemical impedance spectroscopy measurements, the parameters are set asfollows: initial voltage was open-circuit voltage, the highest frequency was 10000 Hz, the lowest frequency was 0.01 Hz, the amplitude was 0.005 V, and static time was 2 s. For Mott-Schottky measurements, the initial voltage was open-circuit voltage, the amplitude was 0.005 V, the static time was 2 s, and the frequency was 1000, 1500 and 2000 Hz. The

applied potentials vs. Ag/AgCl (E Ag/AgCl) were converted to RHE potentials (E RHE) using the following equation:

$$
E_{RHE} = E_{Ag/AgCl} + 0.0591pH + \varphi_{Ag/AgCl} \quad (\varphi_{Ag/AgCl} = 0.199 V)
$$

6. Method for DFT calculations

The optimized molecular structures, HOMO and LUMO energy level based on the segments of these COFs were carried out by Density functional theory (DFT) calculations, which were conducted by the Gaussian 09 software at B3LYP/6-31G(d) level.³

Section II. Synthetic procedures

Scheme S1. The synthetic route of **BO-CHO**.

Synthesis of 4,4'-(benzo[c][1,2,5]oxadiazole-4,7-diyl)dibenzaldehyde (BO-CHO):

(4-formylphenyl)boronic acid (1.12 g, 7.5 mmol), 4,7-dibromobenzo[c][1,2,5]oxadiazole (0.83 g, 3.0 mmol) and Pd(PPh₃)₄ (0.17 g, 0.15 mmol) were added to a 100 mL Schlenk tube, which was degassed with nitrogen three times. Then the deoxygenated K_2CO_3 aqueous solution (2 M, 15 mL) and toluene (48 mL) were added to the Schlenk tube and refluxed for 12 h. After cooling to room temperature, the mixture was poured into the water and extracted with dichloromethane for three times. Then organic phase was dried by anhydrous sodium sulfate, then filtered, and the filtrate was collected. After evaporating the solvent, the crude product was purified by column chromatography (silica gel, petroleum ether: dichloromethane = 1:3) to afford a light yellow solid (0.49 g, yield 50%).¹H NMR (400 MHz, Chloroform-*d*) δ (TMS, ppm): 10.13 (s, 2H), 8.25 (d, *J* = 8.3 Hz, 4H), 8.08 (d, *J* = 8.4 Hz, 4H), 7.84 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm): 191.71, 149.10, 140.65, 136.79, 130.43, 129.78, 129.19, 128.98. HRMS (ESI, m/z): $[M+H]^+$ calculated for $C_{20}H_{13}N_2O_3$: 329.0921, found 329.0941.

Scheme S2. The synthetic route of **BT-CHO**.

Synthesis of 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzaldehyde (BT-CHO):

Compound BT-CHO was synthesized according to the previous literature.⁴ (4-formylphenyl)boronic acid (1.12 g, 7.5 mmol), 4,7-dibromobenzo[c][1,2,5]thiadiazole (0.88 g, 3.0 mmol) and Pd(PPh₃)₄ (0.17 g, 0.15 mmol) were added to a 100 mL Schlenk tube, which was degassed with nitrogen three times. Then the deoxygenated Cs_2CO_3 aqueous solution (2 M, 7.5 mL), toluene (22.5 mL) and EtOH (15 mL) were added to the Schlenk tube and refluxed for 12 h. After cooling to room temperature, the mixture was poured into the water and extracted with dichloromethane for three times. The organic phase was dried by anhydroussodium sulfate, then filtered, and the filtrate was collected. After evaporating the solvent, the crude product was purified by column chromatography (silica gel, petroleum ether: dichloromethane = 1:2) to afford a light yellow solid (0.73 g, yield 70%). ¹H NMR (400 MHz, Chloroform-*d*) δ (TMS, ppm): 10.13 (s, 2H), 8.18 (d, *J* = 8.2 Hz, 4H), 8.08 (d, *J* = 8.3 Hz, 4H), 7.92 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ (ppm): 191.94, 153.92, 143.08, 136.22, 133.16, 130.14, 130.08, 128.83. HRMS (ESI, m/z): $[M+H]^+$ calculated for $C_{20}H_{13}N_2O_2S$: 345.0692, found 345.0684.

Scheme S3. The synthetic route of **BSe-CHO**.

Synthesis of 4,4'-(benzo[c][1,2,5]selenadiazole-4,7-diyl)dibenzaldehyde (BSe-CHO):

(4-formylphenyl)boronic acid (0.75 g, 5.0 mmol), 4,7-dibromobenzo[c][1,2,5]selenadiazole (0.68 g, 2.0 mmol) and Pd(PPh₃)₄ (0.12 g, 0.1 mmol) were added to a 250 mL Schlenk tube, which was degassed with nitrogen three times. Then the deoxygenated K_2CO_3 aqueous solution (2 M, 10 mL), toluene (48 mL) and EtOH (32 mL) were added to the Schlenk tube and refluxed for 12 h. After cooling to room temperature, the mixture was poured into the water and extracted with dichloromethane for three times. The organic phase was dried by anhydrous sodium sulfate, then filtered, and the filtrate was collected. After evaporating the solvent, the crude product was purified by column chromatography (silica gel, petroleum ether: dichloromethane = 1:2) to afford a gold yellow solid (0.61 g, yield 78%). ¹H NMR (400 MHz, Chloroform-*d*) δ (TMS, ppm): 10.13 (s, 2H), 8.11–8.04 (m, 8H), 7.75 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) *δ* (ppm): 192.30, 159.64, 144.10, 136.44, 135.21, 130.66, 130.33, 129.46. HRMS (ESI, m/z): $[M+H]^+$ calculated for $C_{20}H_{13}N_2O_2$ Se: 393.0137, found 393.0153.

Scheme S4. The synthetic route of **Py-BO-COF**, **Py-BT-COF** and **Py-BSe-COF** .

Synthesis of Py-BO-COF:

BO-CHO (13.1 mg, 0.04 mmol), 4,4',4",4"'-(pyrene-1,3,6,8-tetrayl)tetraaniline (Py-NH₂) (11.3 mg, 0.02 mmol), *o*-DCB (0.75 mL) and *n*-BuOH (0.25 mL) were added to a 20 mL Pyrex tube and sonicated for 5 min. Then acetic acid (6 M, 0.1 mL) was added and sonicated for another 5 min. The mixture was sealed under vacuum and then heated at 120 °C for 3 days. After cooling to room temperature, the precipitate was collected by filtration, then washed with THF. Subsequently, the resulting solid was subjected to Soxhlet and extract with THF for 12 h. Finally, the collected sample was dried at 120 ^oC for 12 h to give an orange powder (21.4 mg, yield 93 %).

Synthesis of Py-BT-COF:

Py-BT-COF was synthesized based on the previous literature.⁵ BT-CHO (13.8 mg, 0.04 mmol), Py-NH₂ (11.3 mg, 0.02 mmol), *o*-DCB (0.75 mL) and *n*-BuOH (0.25 mL) were added to a 20 mL Pyrex tube and sonicated for 5 min. Then of acetic acid (6 M, 0.1 mL) was added and sonicated for another 5 min. The mixture was sealed under vacuum and then heated at 120 °C for 3 days. After cooling to room temperature, the precipitate was collected by filtration and then washed with THF. Subsequently, the resulting solid was subjected to Soxhlet and extract with THF for 12 h. Finally, the collected sample was dried at 120 °C for 12 h to give a saffron yellow powder (21.1 mg, yield 89 %).

Synthesis of Py-BSe-COF:

BSe-CHO (15.7 mg, 0.04 mmol), Py-NH² (11.3 mg, 0.02 mmol), *o*-DCB (0.75 mL) and *n*-BuOH (0.25 mL) were added to a 20 mL Pyrex tube and sonicated for 5 min. Then acetic acid (6 M, 0.1 mL) was added and sonicated for another 5 min. The mixture was sealed under vacuum and then heated at 120 °C for 3 days. After cooling to room temperature, the precipitate was collected by filtration and then washed with THF. Subsequently, the resulting solid was subjected to Soxhlet and extract with THF for 12 h. Finally, the collected sample was dried at 120 \degree C for 12 h to give an orange powder (21.6 mg, yield 85 %).

Section III. Supplementary figures and tables

Fig. S1. (a) ¹H NMR and (b) ¹³C NMR spectrum of **BO-CHO**.

Fig. S2. (a) ¹H NMR and (b) ¹³C NMR spectrum of **BT-CHO**.

Fig. S3. (a) ¹H NMR and (b) ¹³C NMR spectrum of **BSe-CHO**.

Fig. S4. (a) The experimental, simulated AA stacking, simulated AB stacking of Py-BO-COF; (b) top view and side view of simulated AA stacking; (c) top view and side view of simulated AB stacking.

Fig. S5. (a) The experimental, simulated AA stacking, simulated AB stacking of Py-BT-COF; (b) top view and side view of simulated AA stacking; (c) top view and side view of simulated AB stacking.

Fig. S6. (a) The experimental, simulated AA stacking, simulated AB stacking of Py-BSe-COF; (b) top view and side view of simulated AA stacking; (c) top view and side view of simulated AB stacking.

Fig. S7. FT-IR spectra of (a)BO-CHO, Py-NH₂ and Py-BO-COF, (b) BSe-CHO, Py-NH₂ and Py-BSe-COF.

Fig. S8. Solid state ¹³C CP/MAS NMR spectra of (a) Py-BO-COF and (b) Py-BSe-COF.

Fig. S9. XPS survey spectra of (a) Py-BO-COF, (b) Py-BT-COF and (c) Py-BSe-COF.

Fig. S10. High resolution XPS spectra of N 1s for (a) Py-BO-COF, (b) Py-BSe-COF.

Fig. S11. (a) PXRD pattern and (b) FT-IR spectra of Py-BO-COF after various treatments for 24 h.

Fig. S12. (a) PXRD pattern and (b) FT-IR spectra of Py-BT-COF after various treatments for 24 h.

Fig. S13. (a) PXRD pattern and (b) FT-IR spectra of Py-BSe-COF after various treatments for 24 h.

Fig. S14. TGA profiles of (a)Py-BO-COF, (b)Py-BT-COF and (c)Py-BSe-COF.

Fig. S15. PXRD patterns of Py-BO-COF, Py-BT-COF and Py-BSe-COF.

Fig. S16. Mott-Schottky (M-S) plot for (a)Py-BO-COF, (b)Py-BT-COF and (c)Py-BSe-COF measured in $Na₂SO₄$ (0.2 M, pH = 6.8) with Ag/AgCl electrode as the reference electrode in dark.

Fig. S17. HOMO and LUMO orbital distribution based on the fragments of Py-BO-COF, Py-BT-COF and Py-BSe-COF.

Fig. S18. HR-TEM images and photodeposited NPs size distributions of Py-BO-COF, at the Pt content of 1wt%(a, e), 2wt%(b, f), 3wt%(c, g), 4wt%(d, h).

Fig. S19. HR-TEM images and photodeposited NPs size distributions of Py-BT-COF, at the Pt content of 1wt%(a, e), 2wt%(b, f), 3wt%(c, g), 4wt%(d, h).

Fig. S20. HR-TEM images and photodeposited NPs size distributions of Py-BSe-COF, at the Pt content of 1wt%(a, e), 2wt%(b, f), 3wt%(c, g), 4wt%(d, h).

Fig. S21. (a)HR-TEM image of Pt NPs on Py-BO-COF. (b) Enlarged HR-TEM image of the red square area in (a). (c) Enlarged HR-TEM image of the blue square area in (a).

Fig. S22. (a)HR-TEM image of Pt NPs on Py-BT-COF. (b) Enlarged HR-TEM image of the red square area in (a). (c) Enlarged HR-TEM image of the blue square area in (a).

Fig. S23. Wavelength-dependent AQE of photocatalytic hydrogen evolution by Py-BT-COF.

Fig. S24. PXRD patterns of (a)Py-BO-COF, (b)Py-BT-COF and (c)Py-BSe-COF before and after photocatalysis.

Fig. S25. SEM images of (a)Py-BO-COF, (b)Py-BT-COF and (c)Py-BSe-COF after photocatalysis.

Fig. S26. (a)PXRD patterns and (b)FT-IR spectra of Py-BT-COF before and after of long cycles.

Fig. S27. The hole (blue) and electron (green) distribution of S1 excited state on (a)Py-BO-COF, (b)Py-BT-COF and (c)Py-BSe-COF. S is the overlap integral of hole-electron distribution and D means the distance between centroid of hole and electron. The balls in different colors represent different atoms: H, white; C, light yellow; N, blue; O, red; S, yellow; Se, orange.

Fig. S28. High resolution XPS spectra of Pt 4f for (a)Py-BO-COF, (b)Py-BT-COF and (c)Py-BSe-COF after photocatalysis.

Table S1. Comparison of photocatalytic hydrogen evolution performance of benzothiadiazol-based COFs

a. AQE: apparent quantum efficiency. **b.** AA: Ascorbic acid.

Photocatalyst (amount)	Co-catalyst	Sacrificial reagent	Irradiation condition	AQE ^a (wavelength	HER $(mmol·g-1·h-1)$	Reference
$sp2c$ -COF _{ERDN} (50 mg)	5 wt% Pt	10 vol% TEOA b	λ > 420 nm	0.48% (495 nm)	2.12	
$sp2c-COF$ (50 mg)	3 wt% Pt	10 vol% TEOA	λ > 420 nm		1.36	$[11]$
PyTz-COF (35 mg)	3 wt% Pt	$0.1M$ AA c	AM 1.5 G		2.07	$[12]$
Py-CITP- BTCOF (20 mg)	5 wt% Pt	$0.1M$ AA	λ > 420 nm	8.45 % (420 nm)	8.87	
Py-FTP-BTCOF (20 mg)	5 wt% Pt	0.1M AA	λ > 420 nm	\blacksquare	2.87	$[10]$
Py-HTP-BTCOF (20 mg)	5 wt% Pt	$0.1M$ AA	λ > 420 nm		1.08	
NKCOF-108 (10 mg)	5 wt% Pt	0.1M AA	λ > 420 nm	2.96% (520 nm)	11.6	$[9]$
Py-BT-COF (5 mg)	2 wt% Pt	0.1M AA	AM 1.5 G	1.26% (420 nm)	10.00	
Py-BO-COF (5 mg)	2 wt% Pt	0.1M AA	AM 1.5 G		5.47	This work
Py-BSe-COF (5 mg)	2 wt% Pt	0.1M AA	AM 1.5 G		0.12	

Table S2. Comparison of photocatalytic hydrogen evolution performance of pyrene-based COFs

a. AQE: apparent quantum efficiency. **b.** TEOA: triethanolamine. **c.** AA: Ascorbic acid.

Table S3. Atomic coordinates of the simulated Py-BO-COF based on AA-stacking mode.

H122	-0.0179	-0.26488	0.74516
H123	-0.01034	-0.3929	0.20692
H124	-0.08501	-0.39122	0.23005
H ₁₂₅	-0.32005	-0.69332	0.92963
H126	-0.33818	-0.76422	0.87335
H127	-0.46077	-0.72273	0.33911
H128	-0.44269	-0.65204	0.39464
H129	-0.74473	-0.40484	0.25358
H130	-0.81952	-0.40219	0.26326
H131	-0.82738	-0.27221	0.75235
H132	-0.75255	-0.27498	0.74114
H133	-0.48919	-0.8448	0.6531
H134	-0.47263	-0.77276	0.72805
H135	-0.96726	-0.26896	0.32932
H136	-0.89158	-0.27243	0.3377

Table S4. Atomic coordinates of the simulated Py-BT-COF based on AA-stacking mode.

H106	-0.44644	-0.53984	0.22774
H107	-0.3298	-0.55237	0.89334
H108	-0.32309	-0.47989	0.88851
H109	-0.55096	-0.35636	0.23017
H110	-0.62249	-0.36569	0.24589
H111	-0.63994	-0.24932	0.94801
H112	-0.5673	-0.24014	0.94033
H113	-0.49713	-0.05064	0.13297
H114	-0.15516	-0.29463	0.64235
H115	-0.34241	-0.61557	0.87015
H116	-0.6822	-0.37326	0.3919
H117	-0.51582	0.02283	0.05162
H118	-0.49904	0.09445	0.11535
H119	-0.37836	0.0568	0.6488
H120	-0.39525	-0.01475	0.58681
H121	-0.09022	-0.26378	0.79483
H122	-0.01523	-0.26729	0.79185
H123	-0.01252	-0.39049	0.18392
H124	-0.08772	-0.38717	0.19059
H125	-0.32366	-0.68898	0.95381
H126	-0.33996	-0.76101	0.88169
H127	-0.45882	-0.72441	0.31305
H128	-0.44258	-0.65252	0.38492
H129	-0.7465	-0.40552	0.25734
H130	-0.82117	-0.40304	0.26791
H131	-0.82591	-0.27683	0.81835
H132	-0.75112	-0.27937	0.8062
H133	-0.48694	-0.84806	0.62319
H134	-0.47134	-0.77567	0.70721
H135	-0.96333	-0.27054	0.36113
H136	-0.88783	-0.27506	0.37961

Table S5. Atomic coordinates of the simulated Py-BSe-COF based on AA-stacking mode.

Section IV. Supplementary References

1. T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi and K. Domen, *Nature*, 2020, **581**, 411-414.

2. M. Wang, Z. Wang, M. Shan, J. Wang, Z. Qiu, J. Song and Z. Li, *Chem. Mater.*, 2023, **35**, 5368-5377. 3. Y. Zhong, W. Dong, S. Ren, L. Li, *Adv. Mater.*, 2024, **36**, 2308251.

4. L. Wang, Q. Xia, M. Hou, C. Yan, Y. Xu, J. Qu and R. Liu, *J. Mater. Chem. B*, 2017, **5**, 9183-9188.

5. Z. Li, Y. Zhi, P. Shao, H. Xia, G. Li, X. Feng, X. Chen, Z. Shi and X. Liu, *Appl. Catal., B*, 2019, **245**, 334- 342.

6. G. Wang, S. Li, C. Yan, Q. Li, F. Zhou, Y. Geng and Y. Dong, *Chem. Commun.*, 2020, **56**, 12612- 12615.

7. C. Lin, X. Liu, B. Yu, C. Han, L. Gong, C. Wang, Y. Gao, Y. Bian and J. Jiang, *ACS Appl. Mater. Interfaces*, 2021, **13**, 27041-27048.

8. C. Han, X. Sun, X. Liang, L. Wang, H. Hu and X. Liu, *J. Mater. Chem. C*, 2023, **11**, 12000.

9. Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang and Y. Chen, *ACS Catal.*, 2021, **11**, 2098-2107.

10. W. Chen, L. Wang, D. Mo, F. He, Z. Wen, X. Wu, H. Xu and L. Chen, *Angew. Chem. Int. Ed.*, 2020, **59**, 16902-16909.

11. E. Jin, Z. Lan, Q. Jiang, K. Geng, G. Li, X. Wang and D. Jiang, *Chem*, 2019, **5**, 1632-1647.

12. W. Li, X. Huang, T. Zeng, Y. A. Liu, W. Hu, H. Yang, Y. Zhang and K. Wen, *Angew. Chem. Int. Ed.*, 2021, **60**, 1869-1874.