Nanocrystalline cellulose-based mixed ionic-electronic conductor for bioelectronics

Katharina Matura,^a Rosarita D'Orsi,^b Laura Spagnuolo,^b Felix Mayr,^a Munise Cobet,^a Christoph Putz,^c Alessandra Operamolla,^b Serpil Tekoglu^a***

^aLinz Institute for Solar Cells (LIOS) and Institute of Physical Chemistry, Johannes Kepler University Linz, Altenberger Str. 69, A-4040, Linz, Austria

^bDepartment of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, I-56124, Pisa, Italy

^cDivision of Soft Matter Physics and Institute of Experimental Physics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040, Austria

**Corresponding author: serpil.tekoglu@jku.at*

Figure S1. X-ray diffraction (XRD)analysis of the sulphated cellulose nanocrystals (S-CNCs) and microcrystalline cellulose, MCC (Avicel). In red: S-CNCs, in blue: Avicel PH-101.

Table S1. Crystallinity Index and elemental analysis of pristine Avicel PH-101 and sulphated cellulose Nanocrystals obtained from Avicel PH-101.

¹Oxygen was calculated by subtracting from 100 C, H, N, and S.

²Crystallinity values are evaluated by Segal method CrI = $[(1₂₀₀-1_{am})]/1₂₀₀ \times 100)$

Figure S2. XPS spectrum of PEDOT:S-CNCs. Peak deconvolution for the (a) O1s and (b) Fe2p signals

Table S2. Elemental analysis PEDOT:S-CNCs with the calculation of C, O, and S ratios and elemental analysis A complete elemental analysis with the calculation of C, O, and S ratios.

Figure S3. (a) Raman spectra of pristine PEDOT and the PEDOT:S-CNC biocomposite, recorded using an excitation wavelength of 1064 nm and a resolution of 4 cm⁻¹. The shown spectra are the average of 1000 scans. (b) Enlarged picture of the peak shift of 4 cm⁻¹.

Figure S4. Optical appearance of S-CNCs aggregates on glass when imaged through polarization filter (recorded in reflective mode).

Table S3. Conductivity and synthesis conditions of PEDOT:S-CNCs in comparison to literature values and commercial PEDOT:PSS (Clevious PH 1000).

^a Dispersion was prepared with the additives (A) 0.5% (v/v) DBSA, 10% (v/v) Glycerol and an additional 1% (v/v) of GOPS. The statistics for the conductivity values were performed on n = 11 thin film substrates (all in the range of approx. 140-270 nm), whereby the used value for each thin film is an average value calculated including three individual thickness and resistance measurements on each thin film.

 b Dispersion from literature reference ¹ was prepared with 5% (v/v) DMSO.

¹FeTos: Iron (III) tosylate, ²APS: Ammonium persulfate

Figure S5. Steady-state electrical characterization of PEDOT:PSS (Clevious PH 1000) based OECTs. (a) Transfer characteristics and the corresponding transconductance curve ($g_{_{\rm max}}$ = 27.3 mS for $V_{_{\rm D}}$ = -0.7 V) and (b) the corresponding output characteristics for a single-channel OECT device (*W* = 2.11 mm, *L* = 48.1 µm, film thickness = 260 nm). (c) Transfer characteristics and transconductance ($g_{_{\rm max}}$ = 54.4 mS for $V_{_{\rm D}}$ = -0.7 V) and (d) the corresponding output characteristics for an interdigitated OECT device (dimensions of one source-drain electrode pair: $W = 0.54 \mu m$, L = 44.9 μm , film thickness = 265 nm).

References

1 S. Atifi, M.-N. Mirvakili and W. Y. Hamad, *ACS Appl. Polym. Mater.*, 2022, **4**, 5626–5637.