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1. Instrumentation and materials

'H NMR (500 MHz), *C NMR (126 MHz), and '°F NMR (471 MHz) spectra were recorded
on a Bruker AVANCE III HD and JEOL JNM-ECAG600II spectrometer. Chemical shifts were
reported as the delta scale in ppm relative to CHCl; (0 = 7.26 ppm), DMSO-ds (0 = 2.50 ppm),
and tetrachloroethane-d> (6 = 7.16 ppm), for 'H NMR, and CDCl; (6 = 77.16 ppm), DMSO-ds (6
= 39.52 ppm), and tetrachloroethane-d> (6 = 73.77 ppm) for *C NMR. Preparative separations
were performed by silica gel column chromatography (Wako gel® C-400 and FUJISILYSIA
CHROMATOREX NH—-DM1020). High-resolution atmospheric pressure chemical ionization
time-of-flight (APCI-TOF) and electrospray ionization time-of-flight (ESI-TOF) mass spectra
were taken on a Bruker micrOTOF instrument using a positive or negative ionization mode. High-
resolution matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass
spectra were taken on a Bruker autoflex max using a positive ionization mode. Redox potentials
were measured using cyclic voltammetry on an ALS electrochemical analyzer model 612C.
Powder X-ray diffraction (XRD) data were collected with Cu Ko radiation using Rigaku R-AXIS-
IV and R-AXIS-VII X-ray imaging plate detectors. The Hirshfeld surface analyses were
performed using the Crystal Explorer software. Out-of-plane XRD measurements of the thin
films were performed using a Rigaku RINT-TTR III/NM X-ray diffractometer with a Cu Ka
source (4 = 1.5418 A) in the 26 scan mode at a fixed incidence angle of 0.58°. Photoelectron yield
spectroscopy measurement was performed using a Riken Keiki AC-3 photoelectron spectrometer.
The atomic force microscope images were obtained using Shimadzu SPM-9700 in the tapping
mode. All calculations were carried out using the Gaussian 16 programs.® Calculations were
performed with Becke’s three-parameter hybrid exchange functional and the Lee—Yang—Parr
correlation functional (B3LYP),? or hybrid exchange-correlation functional using the Coulomb-
attenuating method (CAM-B3LYP),* or Perdew—Burke—Ernzerhof hybrid exchange-correlation
functional (PBEPBE).” X-ray data were obtained using a Rigaku CCD diffractometer (Saturn 724
with MicroMax-007) with Varimax Mo optics. The structures were solved using a direct method
(SHELXT) and refined by a full-matrix least-squares method on F* for all reflections using the
programs of SHELXL-2014. All nonhydrogen atoms were refined with anisotropic displacement
parameters. The hydrogen atoms were placed in idealized positions and refined as riding models
with the relative isotropic displacement parameters. Crystallographic data have been deposited
with the Cambridge Crystallographic Data Centre as a supplementary publication. The oil bath

was used as the heat source for reactions under heating conditions. Dry 1,4-dioxane was prepared



using GlassContour™ solvent purification systems. Diethyl 4-nitrophthalate 7 was synthesized
according to the literature.® Unless otherwise noted, materials obtained from commercial

suppliers were used without further purification.



2. Experimental procedures and compound data

Diethyl 4-aminophthalate 8

o o
1) SnCl,, HCI aqg.
-0 NO, EtOH, reflux -0 NH,
~ O 2) H ~0
o o

Diethyl 4-nitrophthalate 7 (7.94 g, 25.6 mmol) and ethanol (150 mL) were placed in a 300
mL round-bottomed flask. The mixture was stirred at room temperature for 3 min. A solution of
SnCl, (19.1 g, 101 mmol) in conc. HCl aq. (25 mL) was added slowly to the mixture. The mixture
was refluxed for 2 h. The resulting mixture was cooled to 0 °C using ice bath. Then, the reaction
was quenched by the addition of an aqueous NaHCOs solution. The reaction mixture was
extracted with AcOEt. The organic phase was separated, washed with water and brine, and dried
over Na;SO4. After removing the solvent, washing the residue with hexane afforded 8 (5.44 g,
23.0 mmol, 90%) as a pale-yellow solid.
The characterization data matched with the previous report.” "H NMR (500 MHz, CDCl;,
298 K): 0=7.70 (d, J= 8.5 Hz, 1H), 6.70 (d, /= 2.4 Hz, 1H), 6.65 (dd, J: = 8.5 Hz, J, = 2.4 Hz,
1H), 4.34 (q,J="7.2 Hz, 2H), 4.28 (q, J= 7.1 Hz, 2H), 4.16 (s, 2H), 1.34 (t,J= 7.2 Hz, 3H), 1.32
(t, J = 7.1 Hz, 3H) ppm; *C NMR (126 MHz, CDCl;, 298 K): § = 169.4, 166.4, 150.0, 136.7,
132.0, 118.6, 115.0, 113.4, 61.7, 61.0, 14.3, 14.2 ppm; HRMS (APCI-TOF, positive mode):
[M+Na]" Calcd for C12Hi1sNO4Na 260.0893; Found 260.0902.

Diethyl 4-amino-5-iodophthalate 9

@ @
>0 NH, NIS N0 NH,
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Compound 8 (1.02 g, 4.20 mmol) and DMF (26 mL) were placed in a 100 mL round-
bottomed flask. The mixture was stirred at room temperature for 3 min. NIS (1.94 g, 8.61 mmol)
was added in one portion. The mixture was stirred at 45 °C for 11 h under light-shielded conditions.
The resulting mixture was cooled to 0 °C using ice bath. Then, the reaction was quenched by the
addition of an aqueous Na,S,0s solution. The reaction mixture was extracted with toluene. The

organic phase was separated, washed with water and brine, and dried over Na,SOs4. After



removing the solvent, the residue was purified by amino-functionalized silica gel column
chromatography (eluent: AcOEt/hexane = 1/4 to 1/1). After removal of the solvent in vacuo,
crystallization by scratching the supercooling oil afforded compound 9 (885 mg, 2.44 mmol, 57%)
as a pale-yellow solid.

'H NMR (500 MHz, CDCls, 298 K): 6 = 8.16 (s, 1H), 6.77 (s, 1H), 4.65 (s, 2H), 4.32 (q,J =
7.2 Hz, 2H), 4.28 (q, J = 7.2 Hz, 2H), 1.33 (t,J = 7.2 Hz, 3H), 1.32 (t,J = 7.2 Hz, 3H) ppm; "*C
NMR (126 MHz, CDCls, 298 K): 6 = 168.6, 165.0, 150.1, 141.1, 136.3, 119.9, 112.6, 83.5, 61.9,
61.3, 14.3, 14.1 ppm; HRMS (APCI-TOF, positive mode): [M+Na]" Calcd for Ci2H;sNO4INa
385.9860; Found 385.9877.

Phenazine-2,3,6,7-tetracarboxylic acid tetraethyl ester 10
cat. Pd(OAc),

9 t. Ruph 0 o
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A mixture of compound 9 (873 mg, 2.4 mmol), Pd(OAc), (53.4 mg, 238 umol), Ruphos (225

mg, 483 pumol), and Cs,COs3 (2.36 g, 7.23 mmol) was prepared in an-argon filled glove box. Then,
the mixture was removed from the glove box, and dry 1,4-dioxane (24 mL) was added. The
mixture was refluxed for 6 h under argon in the dark. The reaction mixture was cooled to room
temperature. The resulting mixture was filtered on a Celite pad and washed with CHCl;. After
removing the solvent, the residue was purified by amino-functionalized silica gel column
chromatography (eluent: AcOEt/hexane = 1/9 to 1/1). After the removal of the solvent in vacuo,
the residue was washed by hexane. Compound 10 (351 mg, 751 pmol, 63%) was obtained as a
yellow solid.

'H NMR (500 MHz, CDCls, 298 K): § = 8.66 (s, 4H), 4.49 (q, J= 7.2 Hz, 8H), 1.45 (t, J =
7.2 Hz, 12H) ppm; *C NMR (126 MHz, CDCls, 298 K): 6 = 166.3, 144.3, 134.3, 132.1, 62.5,
14.3 ppm; HRMS (ESI-TOF, positive mode): [M+Na]" Caled for C24H2sN>OsNa 491.1425; Found
491.1433.



Phenazine-2,3,6,7-tetracarboxylic acid 11

1) KOH
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Compound 10 (351 mg, 751 umol), 1,4-dioxane (15 mL), and water (7.5 mL) were placed

in a 100 mL round-bottomed flask. The mixture was stirred at room temperature for 3 min. KOH
(1.94 g, 8.61 mmol) was added with one portion. The mixture was refluxed for 11 h under light-
shielded conditions. The resulting mixture was cooled to room temperature. Then, 2 M HCI aq.
(50 mL) was added. The mixture was stirred at room temperature for 16 h under light-shielded
conditions. The resulting mixture was filtered and washed with water. Compound 11 (232 mg,
652 umol, 87%) was obtained as an off-white solid.

'H NMR (500 MHz, DMSO-ds, 298 K): 6 = 8.55 (s, 4H) ppm (The signal of carboxylic acid
was hardly observed, probably due to the hydrogen bonding with solvents and spontaneous proton
exchange reactions.); 3C NMR (126 MHz, DMSO-ds, 298 K): 6 = 167.5, 143.7, 135.3, 130.8
ppm; HRMS (ESI-TOF, negative mode): [M-H] Calcd for Ci;sH;N>Og 355.0208; Found
355.0212.

Phenazine-2,3,6,7-tetracarboxylic dianhydride 12

O O
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Compound 11 (232 mg, 652 umol) and toluene (65 mL) were placed in a 100 mL round-
bottomed flask. The mixture was sonicated for 1 min and stirred at 0 °C for 3 min. Trifluoroacetic
anhydride (1.8 mL, 13 mmol) was added slowly to the mixture. The mixture was stirred at 0 °C
for 2 h in the dark. The resulting mixture was filtered and washed with toluene and hexane.
Compound 12 (168 mg, 523 umol, 80%) was obtained as a yellow solid. Further purification was
not conducted in this step.

'H and "*C NMR spectra were not obtained due to the poor solubility of the product and the
low stability toward moisture. HRMS (MALDI-TOF, positive mode): [M+H]" Calcd for
CisHsN206 321.0142.1425; Found 321.0139.



N,N’-Bis(3,5-di-fert-butylphenyl)phenazine-2,3,6,7-tetracarboximide 4a

(e} 0] (0] O
N\ NH2 N\
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Compound 12 (160 mg, 499 umol), 3,5-di-tert-butylaniline (306 mg, 1.49 mmol), and AcOH

(25 mL) were placed in a 100 mL round-bottomed flask. The mixture was refluxed for 15 h under
light-shielded conditions. The reaction mixture was cooled to room temperature. The resulting
mixture was filtered and washed with 2 M HCl aq. and water. The solid was dried under reduced
pressure. After removing the solvent, the residue was purified by silica gel column
chromatography (eluent: CH>Cl,). After the removal of the solvent in vacuo, the residue was
washed with hexane. Compound 4a (217 mg, 312 umol, 63%) was obtained as a yellow solid.

'H NMR (500 MHz, CDCls, 298 K): 6 = 8.91 (s, 4H), 7.54 (t, J = 1.7 Hz, 2H), 7.32 (t, J =
1.7 Hz, 4H), 1.39 (s, 36H) ppm; *C NMR (126 MHz, CDCls, 298 K): 6 = 165.6, 152.2, 146.1,
132.7, 130.8, 127.5, 123.3, 121.0, 35.3, 31.5 ppm; HRMS (APCI-TOF, negative mode): [M]"
Calcd for C44H46N4O4 694.3514; Found 694.3514.

N,N’-biscyclohexylphenazine-2,3,6,7-tetracarboximide 4b

(@) (@) ; (@) (@)
ST OISO
N 0-DCB/EtCO,H N

Compound 12 (63.9 mg, 199 pmol) and o-dichlorobenzene (8 mL) were placed in a 50 mL

round-bottomed flask. The mixture was sonicated for 1 min. Cyclohexylamine (70 pL, 0.61
mmol) was added to the mixture. The mixture was stirred at 150 °C for 12 h under light-shielded
conditions. Propionic acid (2 mL) was added to the mixture. The crude mixture was stirred at
150 °C for 48 h under light-shielded conditions. The reaction mixture was cooled to room
temperature and quenched by aqueous NaHCOj3 solution. The resulting mixture was filtered and
washed with water and MeOH. Compound 4b (58.4 mg, 122 pmol, 61%) was obtained as a

crystalline yellow solid.



'H NMR (500 MHz, CDCls, 298 K): 6 = 8.74 (s, 4H), 4.29 (tt, J; = 18.5 Hz, J» = 3.9 Hz,
2H), 2.32 (qd, J; = 12.3 Hz, J> = 3.4 Hz, 4H), 1.93 (m, 4H), 1.82 (m, 4H), 1.75 (m, 2H), 1.43 (qt,
Ji=13.1Hz, J,=3.4 Hz, 4H), 1.34 (tt, J; = 12.8 Hz, J, = 3.2 Hz, 2H) ppm; *C NMR (126 MHz,
CDCls, 298 K): 6 = 166.2, 145.8, 132.7, 126.5, 52.1, 29.6, 25.9, 25.1 ppm; HRMS (APCI-TOF,
negative mode): [M]™ Calcd for C23H26N4O4 482.1949; Found 482.1970.

N,N’-bis(2,2,3,3,4,4,4-heptafluorobutyl)phenazine-2,3,6,7-tetracarboximide 4c

e FF
Q 0 H2N%< 0 o _F F
N\ FF F F N\ F F
o) ] F N N F
N7 toluene/pyridine F NG
0 o) reflux = F F 0 0]
o . FF o

Compound 12 (111 mg, 348 pmol), toluene (14 mL), and pyridine (3.5 mL) were placed in
a 50 mL round-bottomed flask. 2,2,3,3,4,4,4-Heptafluorobutylamine (0.14 mL, 1.1 mmol) was
added slowly to the mixture. The mixture was refluxed for 14 h under light-shielded conditions.
The reaction mixture was cooled to room temperature. The resulting mixture was filtered and
washed with MeOH. The crude solid was recrystallized from o-DCB at 140 °C. The precipitates
were filtered and washed with DCM. Compound 4¢ (52.6 mg, 77.0 umol, 22%) was obtained as
a crystalline yellow solid.

'H NMR (500 MHz, (CD>Cl),, 403 K): § = 8.97 (s, 4H), 4.59 (t, J = 14.8 Hz, 4H) ppm; "*C
NMR (126 MHz, (CD:Cl,),, 403 K): 6 = 164.1, 145.7, 131.9, 127.8, 38.1 (t, J = 50.3 Hz) ppm;
F NMR (471 MHz, (CD:Cl,),, 403 K): 6 = —79.9 (6F), —~114.6 (4F), —~126.4 (4F) ppm; HRMS
(APCI-TOF, negative mode): [M] Calcd for C24HgF14N4O4 682.0317; Found 682.0332.

N,N'-dihydrophenazine bisimide 13

) TMS— N N-TMS (1.5eq.)
THF, RT 1h
2) MeOH (excess), 30 min

In an argon-filled glovebox, compound 4a (19.1 mg, 27.5 umol), 1,4-bis(trimethylsilyl)-1,4-

dihydropyrazine (9.4 mg, 42 umol), and dry THF (2.5 mL) were placed in an 8§ mL vial. The
mixture was stirred at room temperature for 1 h. MeOH (1 mL) was added to the reaction mixture.
The precipitates were filtrated and washed with methanol, affording compound 13 (17.1 mg, 24.6

pmol, 89%) as a brown solid. The obtained solid was purified by silica gel column



chromatography (eluent: CH,Clo/AcOEt = 20/1) for photophysical measurements.

'H NMR (500 MHz, DMSO-ds, 293 K): 6 = 8.82 (s, 2H, The signal was weakened by the
addition of D,0.), 7.39 (s, br, 2H), 7.12 (s, br, 4H), 6.22 (s, 4H), 1.27 (s, 36H) ppm; BC NMR
(126 MHz, DMSO-ds, 293 K): 6 = 166.6, 150.8, 138.9, 131.6, 126.1, 121.2, 105.1, 34.6, 31.1
ppm; HRMS (ESI-TOF, negative mode): [M—H] Calcd. for CssH47N4O4 695.3603; Found
695.3575.

Ocxidation of NV,N'-dihydrophenazine bisimide 13

(0] H (0] (0] (0]
N ; N
p-chloranil \
N N CH.CI N 2 N
2Llo
N RT N
0 H 0 o o]

Dihydrophenazine bisimide 13 (3.68 mg, 5.28 umol) and CH>Cl, (5 mL) were placed in a

50 mL round-bottomed flask. The mixture was stirred at room temperature for 3 min. Then, p-
chloranil (2.77 mg, 11.3 pmol) was added to the mixture. The mixture was stirred for 5 min at
room temperature. After removing the solvent, the residue was purified by silica gel column
chromatography (eluent: CH>Cl/AcOEt = 50/1). After the removal of the solvent in vacuo,

compound 4a (1.89 mg, 2.72 umol, 51%) was obtained as a yellow solid.
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3. NMR spectra
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Figure S1. 'H NMR spectrum of 8 in CDCl; at 25 °C. *Residual solvents.
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4. Mass spectra
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Figure S18. ESI-TOF mass spectrum of 8.
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Figure S19. ESI-TOF mass spectrum of 9.
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Figure S20. ESI-TOF mass spectrum of 10.
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Figure S23. APCI-TOF mass spectrum of 4a.
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Figure S24. APCI-TOF mass spectrum of 4b.
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Figure S25. APCI-TOF mass spectrum of 4c.
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Figure S26. APCI-TOF mass spectrum of 13.
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5. Crystal data

The crystal of 4¢ was prepared using the naphthalene flux method.” A H shaped

glass tube containing 4¢ (5 mg) and naphthalene (200 mg) on one side was sealed under

vacuum. The sealed glass tube was put in a separable aluminum heating block (Figure

S27). One side of the tube containing the sample was heated at 230 °C, and the other side

containing naphthalene was heated at 240 °C for 1 h. Then, each part was gradually cooled

to 120 °C and 130 °C, respectively, over 12 h. Next, the vacant one was kept at 90 °C for

6 h. After that, the single crystal of 4c¢ was isolated apart from naphthalene.

Naphthalene 200 mg
sample 5 mg

by flame

sealed f —

Temperature/°C
@
o

keeping 1 h
A: 240 °C, B: 230 °C

melting
Con. A: 130 °C
0y B: 120 °C
24 K
/

»

Keeping 6 h
A:90°C, B: 120 °C

‘ single crystal

10 15 20 25

Time/h

Figure S28. Crystal structure of 4¢ with thermal ellipsoids at 50% probability. Hydrogen atoms

and substituents on imide groups are omitted for clarity. The value in parentheses shows the

HOMA value.
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Table S1. Crystallographic data of 4b, 4¢, and 6.

compound 4b 4c 6
formula C28H26N404 C24HgF 14N4O4 C30H28N204
formula weight 482.53 682.34 480.54
crystal system triclinic triclinic monoclinic
space group P-1(#2) P-1(#2) 2/a (#15)
crystal color yellow yellow colorless
crystal description plate plate needle
a[A] 5.1483(2) 5.2387(3) 22.6197(11)
b [A] 6.1694(2) 5.8596(4) 5.2092(2)
c[A] 18.5347(6) 21.0219(14) 38.7744(17)
a[°] 86.250(3) 92.930(5) -
b[°] 82.260(3) 94.979(5) 91.172(4)
7 [°] 81.884(3) 96.674(5) -
VA% 576.85(4) 637.29(7) 4567.9(3)
VA 1 1 8
deatca [g cm ] 1.389 1.778 1.398
R, (I>2s(D)) 0.0506 0.0808 0.0888
wR; (all data) 0.1749 0.2935 0.2334
GOF 1.038 1.061 1.030
Temperature [K] 293(2) 293(2) 93(2)
solvent 0-CsH4Cly/ naphthalene toluene
octane flux
CCDC 2348427 2348428 2348426
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6. Electron-transporting behavior

For fabricating thin-film OFETs, the substrates modified with self-assembled monolayers
(SAMs) of 12-cyclohexyldodecylphosphonic acid (CDPA) were used. SAM-modified substrates
were prepared as described in the literature.® Heavily n-doped Si wafers with a 300 nm-thick
thermally grown SiO, layer were used as substrates. The Si/SiO, substrates were cleaned with
deionized water, acetone, and 2-propanol for 10 min in an ultrasonic bath. Substrates were dried
with a flow of N gas and then treated by UV—0;s cleaner (Filgen UV253VS8) for 45 min. A solution
of AI(NO3)3-9H,0 in ethanol (0.1 M) was spin-coated (5000 rpm, 40 s) on cleaned substrates in
an N, glove box, and the substrates were annealed at 300 °C for 30 min in air to form Al,O; layer.
The Al,Os-coated substrates were treated with UV—Os3 cleaner for 45 min and then soaked in a
solution of CDPA in 2-propanol (1.5 mM) at room temperature for 12 h. Finally, substrates were
washed with 2-propanol and deionized water and then dried with a flow of N» gas to afford SAM-
modified substrates. The average capacitance per unit area of the dielectric layer (Ci) of the
insulating layer prepared by this method was measured to be 10 nF cm 2.’ The active layer was
prepared by vacuum-deposition method using solid of 4b and 4¢ for 500 A at 0.3-0.8 A s™' under
the pressure of ~5 x 10~ Pa. The top contact source and drain electrodes of gold films (thickness
=300 A) were vacuum deposited under the pressure of ~5 x 10~ Pa through a shadow mask on
the active layer (Figure S29). The drain—source channel length (L) and width () was 50 um and
1000 pm, respectively. The gold electrodes were deposited in the same manner as the thin-film
OFETs. The L and W values were measured to be 60.0 pm and 69.4 pum, respectively, using a
Zeiss Axio Scope Al optical microscope. The output and transfer characteristics of the OFETs
were measured using a vacuum prober system (Thermal Block Company, SB-MCPS-NAT) and a
Keithley 2400 semiconductor characterization system under vacuum at the pressure of ~3 x 10!
Pa and atmospheric conditions. The field-effect mobilities (u«) of the OFETs were determined from
the forward transfer curve in the saturation regime (¥ps = 80 V for 4b and Vps = 60 V for 4¢) and
regime (Vps = 5V) using the following equation,

Ins = uWC{(Vo—V)*/2L (saturation regime)
Ins = uWCiVps{2(Vo—Vm)-Vps}/2L (linear regime)

Where /ps is the drain—source current and Vps, Vg, and Vi are the drain—source voltage, gate
voltage, and threshold voltage, respectively. The on/off ratios (Zon/lofr) were determined from the
Ins at Vo =0V (Iof) and Vg =80 V (Ion). The averaged u values (iaverage) Of the thin-film OFETs

were calculated from nine devices for 4b and seventeen devices for 4c¢.
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Figure S30. AFM images of vacuum-deposited films of 4b and 4c.
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Figure S31. Thin film out-of-plane X-ray diffraction patterns of vacuum-deposited film of 4b

(black line) and 4c (red line). Upper lines are observed patterns. Lower lines are simulated

patterns from the single crystal structure.
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Figure S32. Thin-film OFET properties of 4b under (a,b) vacuum and (c,d) ambient conditions.

(a,c) Transfer characteristics. (b,d) Output characteristics.
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Figure S33. Thin-film OFET properties of 4¢ under (a,b) vacuum and (c,d) ambient conditions.

(a,c) Transfer characteristics. (b,d) Output characteristics.

Table S2. Vacuum-deposited OFET characteristics in saturated region of Sb and Sc.

condition 1T Havemse Vi [V] Lo/l -]
[cm? V1 s1] [cm? V! s71]
4b vacuum  9.9x 102  (4.6+24)x 102 46+13  (3.4+7.8)x 10°
air 6.4x10°  (22+08)x102 61+4  (2.7+2.6)x 10*
4c  vacuum  82x10°  (5.7£2.9)x 103 11£3  (3.5+25)x 10°
air 35%10° (26+1.7)x10° 73+52  (13%1.2)x 10°
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Figure S34. Transfer characteristics in the linear regime of thin-film OFET properties of (a,b) 4b
and (c,d) 4¢ under (a,c) vacuum and (b,d) ambient conditions. Black line: forward sweeping. Red

line: backward sweeping.

Table S3. Vacuum-deposited OFET characteristics in linear region of 4b and 4c.

. Mmax MUaverage
condition ¢ Vin [V] Lon/Lofr [-]
[cm? V1 s1] [cm? V! s71]

4b  vacuum 3.1 x 1072 (24+0.5)x 1072 53+ 8 (6.8 =8.4) x 10*

air 50x10°  (41£1.7)x103 18+4 (3.1+6.4) % 103
4c  vacuum 43 %102  (22+05)x103  64+8 (33+7.2% 105
air 21%x 103 (14+£04)x103 2243 (1.1+2.8) x 10*
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7. TRMC measurement

Transient photoconductivity was measured by an FP-TRMC setup. A resonant cavity with Q
~ 2500 was used to obtain a high degree of sensitivity in the conductivity measurement. Proving
microwave frequency and power were set at ~9.1 GHz and 3.0 mW, respectively, such that the
electric field of the microwave was sufficiently small not to disturb the translational motion of
charge carriers. The observed value of photoconductivity converted to the product of the quantum
yield ¢ and the sum of charge-carrier mobilities T by pXu = Ao (eloFiign) ', where e, 1o, Flight
and Ao are the unit charge of a single electron, incident photon density of excitation laser (photons
per m?), a correction factor (m') and transient photoconductivity, respectively. The sample was
set at the point of the electric field maximum in a resonant cavity. FP-TRMC experiments were
performed at room temperature under O or argon-saturated conditions by continuous flowing for
over 10 min. The measurements of all the samples were performed for polycrystalline samples.

These samples were fixed on a quartz substrate by poly(vinyl alcohol) binders.
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Figure S35. (a) Conductivity transients in 4b (blue line) and 4¢ (red line) observed by FP-TRMC
spectroscopy upon excitation at 355 nm laser pulses at 1.8 x 10'° photons cm 2. (b) Conductivity
transient observed in 4¢ upon modulated excitation density at 355 nm from 4.5 x 10"-9.1 x

10'° photons cm ™2,
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Figure S36. (a) Photocurrent transient observed in pristine thin film of 4¢ cast onto electrodes
with 5 um gap upon excitation at 355 nm laser pulses at4.1 x 10" photons cm 2. (b) Dependence

on observed photocurrent on bias applied to the gap at £ =2.0 x 10*-10 x 10*Vcm ™.
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Figure S37. Global kinetic traces of transient photoconductivity observed for 4¢ in air or SFs

upon excitation at 355 nm laser pulses at 4.1 x 10'° photons cm 2.
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Figure S38. Conductivity transients in 4b (blue line) and 6 (red and green lines, green:

reproducibility checking under identical conditions) observed by FP-TRMC spectroscopy upon

excitation at 355 nm laser pulses at 1.8 x 10'° photons cm ™2,
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Figure S39. Powder X-ray diffraction patterns of crystalline powder samples of 4b (black line)
and 4c¢ (red line). Upper lines are observed patterns. Lower lines are simulated patterns from the

single crystal structure. The inset shows an enlarged simulated pattern of 4c.
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8. DFT calculations

(@)

-0.07 0.07

-0.07 0.07

Figure S40. Electron static potential maps of (a) 6 and (b) 4. DFT calculations were conducted at
the B3LYP/6-31G+(d,p) level. The substituents on the imide groups are replaced with methyl

groups to simplify the calculations.
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Figure S41. Optimized structures of (a) 6, (b) 6', (¢) 4, and (f) 4. The values indicate the bond
lengths. (c,g) The bond lengths deviation from neutral species. (d,h) One of the resonance
structures with quinoidal forms. DFT calculations were conducted at the (U)B3LYP/6-31G+(d,p)

level. The substituents on the imide groups are replaced with methyl groups to simplify the

calculations.
LUMO: -1.61 eV LUMO: —-2.03 eV LUMO: -2.71 eV
HOMO: -7.69 eV HOMO: -7.50 eV HOMO: -8.72 eV
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Figure S42. Calculated HOMO and LUMO levels of phenazine, anthracene diimide, and PzBI.
DFT calculations were conducted at the CAM-B3LYP/6-31+G(d,p) level of theory.
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Table S4. Cartesian coordinate and geometry of phenazine.

TIZITZTTTIoDIDZZzO000cac0zaoacaaaann

-0.0003312
0.0321079
1.2234142
2.4551425
2.4658712
1.2376611
1.2618028

0.087186
0.054747

-1.1365594

-2.3682876

-2.3790162

-1.1508062

-1.1749478

-0.9162647
3.3864226
1.0031196

-3.2995676
3.3888456
1.2463545

-3.3019907

-1.1594996

-0.0417506
-0.0756151
-0.1495538
-0.1943302
-0.1641047
-0.0867665
-0.0578137
0.0147315
0.048596
0.1225347
0.1673111
0.1370856
0.0597474
0.0307947
-0.040419
-0.1968291
0.0134
0.16981
-0.2530616
-0.1751984
0.2260425
0.1481793

Negative frequency = zero

Sum of electronic and thermal free energies = —571.182625 Hartree

50

-0.0006083
1.4274659
2.0832419
1.3600832

-0.0014189

-0.7274445

-2.0622681
-2.693296

-4.12137

-4.7771461

-4.0539875

-2.6924853

-1.9664599

-0.6316361
1.9523259

-0.5738192

-4.6462301

-2.1200851
1.9100432
3.1679186

-4.6039474

-5.8618228



Table S5. Cartesian coordinate and geometry of N,N'-dimethyl anthracene bisimide.

C 0 0 0
C 0 0 1.4401816
C 2.4390985 0 1.4399761
C 2.4390985 0 -0.0002055
C 3.6856693 0 2.1496556
C 3.6856545 0 -0.7099647
C -1.2465707 0 -0.7096795
C -1.246556 0 2.1499408
C -2.3944503 0 0.0092883
C -3.8116965 0 -0.4458364
C -2.3945233 0 1.4311822
C -3.8128576 0 1.8827163
C 4.8335489 0 1.4306877
C 6.2507951 0 1.8858125
C 4.8336218 0 0.0087938
C 6.2519562 0 -0.4427403
H -1.2597776 0 -1.7950689
H -1.2594883 0 3.2353498
H 3.6988761 0 3.235045
H 3.6985868 0 -1.7953737
N 7.0228471 0.0000316 0.7203775
N -4.5837486 -0.0000144 0.7195985
O 6.6875124 0.0000221 3.0153365
O 6.6974421 0.0000222 -1.5691867
O -4.2583436 -0.0000261 3.0091628
(0] -4.2484138 -0.0000225 -1.5753605
C 8.4714504 0.0000571 0.7102149
H 8.8452607 0.8873727 0.1952161
H 8.8083924 0.0006863 1.7463062
H 8.8453577 -0.8878561 0.1963056
C -6.0323519 -0.0000533 0.7297611
H -6.4062099 0.8873346 1.2446026
H -6.3692939 0.0003811 -0.3063302
H -6.4062115 -0.8878943 1.243828
C 1.2195985 0 2.1180733
C 1.2195 0 -0.6780972
H 1.2196901 0 3.2043607
H 1.2194085 0 -1.7643846

Negative frequency = zero

Sum of electronic and thermal free energies =—1179.104671 Hartree
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Table S6. Cartesian coordinate and geometry of N,N'-dimethyl PzBI.

C -0.0017935 -0.0417472 0.0025076
C 0.005669 -0.0744981 1.436112
C 1.208526 -0.1481341 2.0532778
C 24361764 -0.1927539 1.3323549
C 2.4862832 -0.1646869 -0.020394
C 1.2409946 -0.0869353 -0.7272202
C 1.5380136 -0.1973398 3.5072317
C 3.5444791 -0.2701992 2.3278341
N 1.2589249 -0.0577093 -2.0605817
N 2.9287843 -0.2680066 3.5819088
O 0.7909669 -0.1818026 4.4588333
O 4.7366063 -0.324841 2.130593
C 0.0886476 0.0147286 -2.696412
C 0.0811858 0.0474792 -4.1300155
C -1.1216715 0.1211149 -4.7471817
C -2.3493212 0.1657347 -4.0262593
C -2.3994278 0.1376677 -2.6735099
C -1.1541396 0.0599163 -1.9666848
C -1.4511589 0.1703198 -6.2011359
C -3.4576241 0.2431804 -5.0217384
N -1.1720697 0.0306904 -0.6333218
N -2.8419296 0.2409864 -6.2758133
O -0.704112 0.1547831 -7.1527373
O -4.6497513 0.2978217 -4.824497
H -0.9348209 -0.0399997 1.9744979
H 3.414822 -0.1981234 -0.57918
H 1.0216756 0.0129808 -4.6684016
H -3.3279666 0.1711042 -2.114724
C -3.5642084 0.3051739 -7.5307543
H -3.264893 1.1923377 -8.0923399
H -3.3520524 -0.5805658 -8.1328127
H -4.6273191 0.3521332 -7.2974907
C 3.651063 -0.3321938 4.83685
H 3.4389266 0.5535574 5.4388987
H 3.3517291 -1.2193447 5.3984457
H 4.7141725 -0.3791773 4.6035859

Negative frequency = zero

Sum of electronic and thermal free energies =—1211.201859 Hartree
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9. Optical properties
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Figure S43. (a) Transient absorption spectra and (b) decay profiles of 4a in CH>Cl, under No.
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Figure S44. UV/Vis absorption and emission spectra of 4b (red line) and 6 (black line). (4b:
absorbance was recorded in CH>Cl, at room temperature, and emission was recorded in 2-
methyltetrahydrofuran at 77 K with dex = 365 nm); (6: Aex = 365 nm, in CH»Cl,, at room

temperature). A = wavelength; ¢ = extinction coefficient.
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10. Redox properties

cv -1.60 V

-0.99V
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Figure S45. Cyclic and differential pulse voltammograms of 4a in CH,Cl,.
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Figure S46. Cyclic and differential pulse voltammograms of 4¢ in CH,Cl,.
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