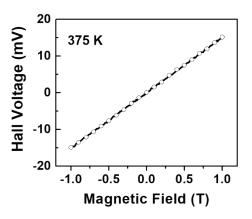

1	Supplementary information
2	P-type β -Ga ₂ O ₃ films room-temperature NH ₃ gas sensors with fast gas sensing
3	and low limitation of detection
4	Hongchao Zhai ^a , Zhengyuan Wu ^{b,*} , Kai Xiao ^a , Meiying Ge ^c , Chenxing Liu ^a , Pengfei Tian ^a ,
5	Jing Wan ^a , Jianlu Wang ^b , Junyong Kang ^d , Junhao Chu ^b , Zhilai Fang ^{a,b,*}
6	
7	^a Academy for Engineering and Technology, and School of Information Science and Technology, Fudan
8	University, Shanghai 200433, China
9	^b Institute of Optoelectronics, Fudan University, Shanghai 200433, China
10	° National Engineering Research Center for Nanotechnology, No. 28 East Jiang Chuan Road, Shanghai 200241,
11	China
12	^d Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of
13	Physics, Xiamen University, Xiamen 361005, China
14	
15	
16	* E-mail address: <u>zlfang@fudan.edu.cn</u> , <u>zhengyuanwu@fudan.edu.cn</u>
17	

^{*} Corresponding author.

E-mail address: zlfang@fudan.edu.cn, zhengyuanwu@fudan.edu.cn

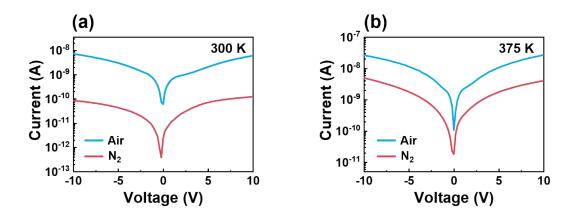

1

2 Figure S1. The transient response characteristics p-type N-doped β-Ga₂O₃ gas sensors under 50
3 ppm NH₃ with different humidity.

4

5 The transient humidity influence on NH_3 detection of the p-type N-doped β -Ga₂O₃ gas sensors 6 is shown in Figure S1. The NH_3 response slightly increases as relative humidity increases from 7 30% to 90%. The humidity variation is only 1.07% of the NH_3 response, which shows low 8 humidity effect. The p-type N-doped β -Ga₂O₃ gas sensor is stable over a large humidity range.

9


2

1

3 Figure S2. Hall voltage versus applied magnetic field for the N-doped β -Ga₂O₃ films at 375 K.

5 Figure S2 shows the magnetic-field-dependent Hall measurement conducted on N-doped β -6 Ga₂O₃ films at 375 K with a positive Hall coefficient. The Hall hole concentration is 4.15×10^{15} 7 cm⁻³.

8

2 Figure S3. The *I–V* characteristics of the p-type β-Ga₂O₃ MSM sensors in dry air and N₂ (a) at
3 300 K and (b) 375 K.

4

1

5 The width of the HAL can be extracted from the I-V characteristics of p-type β -Ga₂O₃ MSM 6 sensors in dry air and in the N₂ gas atmosphere (Figure S3) by equation:

7
$$\sigma_g = \sigma_a \times exp(-e \Delta V_{sur}/kT)$$

8
$$\Delta x_{sur} = (2\varepsilon \Delta V_{sur}/eN_A)$$

9 The width of HAL in dry air at 10 V bias is calculated to be 44.5 nm at 300 K (x_{sur} , W_{HAL}), 10 and decreases to 19.7 nm at 375 K, which is suitable for RT gas sensing involving multi-carriers 11 chemisorbed reactions