Growth, characterization and theoretical analysis of α-SrGeO₃ as a candidate

mid-IR stimulated Raman scattering crystal

Hailong Wang, Bin Li, Ying Zhou, Guimei Zheng, Xue Zhang and Songming Wan

Table of Contents

Synthesis of polycrystalline raw materials for growth of the α-SrGeO ₃ crystal	S2
Convergence test for the total energy of α -SrGeO ₃ with respect to the <i>k</i> -point grids	S3
Convergence test for the total energy of α -SrGeO ₃ with respect to the energy cutoffs	S3
Vibrational modes and their corresponding frequencies of the α-SrGeO ₃ crystal······	S4
Nine characteristic Raman vibrational modes of the α-SrGeO ₃ crystal	S5

Synthesis of polycrystalline raw materials for growth of the α -SrGeO₃ crystal

Fig. S1 Experimental and standard patterns of α-SrGeO₃ [Joint Committee on Powder Diffraction Standards (JCPDS) card No. 87-469].

Fig. S2 Experimental and standard patterns of NaBO₂ (JCPDS No. 32-1046).

Polycrystalline raw materials of α -SrGeO₃ and NaBO₂ were synthesized via high-temperature solid-state reactions. All of the chemical reagents were commercially available and used without further treatment: (1) SrCO₃, 99.0%, Sinopharm Chemical Reagent Co., Ltd.; (2) GeO₂, 99.99%, Xiangkang Technology Development Co., Ltd., China; (3) Na₂CO₃, 99.8%, Sinopharm Chemical Reagent Co., Ltd.; (4) H₃BO₃, 99.5%, Yunling Chemical Reagent Co., China. The chemical reagents in stoichiometric ratios were weighed, mixed, and fully ground in a mortar. Then, the mixture was transferred to a corundum crucible and heated in a furnace. For α -SrGeO₃, the mixture was heated at 1000°C for 24 h with an intermediate grinding. For NaBO₂, the mixture was heated at 600°C for the first 12 hours. Then, the obtained intermediate product was reground and calcined at 650°C for the second 12 hours.

The polycrystalline products were identified by the XRD technology. The results are shown in Figs. S1 and S2, responding to polycrystalline α -SrGeO₃ and NaBO₂, respectively. The consistency of the experimental and the standard patterns indicates that the synthesized products are α -SrGeO₃ and NaBO₂.

k-point	total energy (eV)
$1 \times 1 \times 1$	-26906.6557
$1 \times 2 \times 1$	-26906.8228
$1 \times 2 \times 2$	-26906.8363

Table S1. Convergence test for the total energy of α -SrGeO3 with respect to the *k*-point grids (the energy cutoff is
fixed at 1000 eV)

Fig. S3 Convergence test for the total energy of α -SrGeO₃ with respect to the energy cutoffs. The *k*-point grid is fixed at $1 \times 2 \times 1$.

Table S1 and Fig. S3 display the results of convergence tests for the total energy of α -SrGeO₃ with respect to the *k*-point grids and the energy cutoffs, respectively. The results indicate that a *k*-point grid of $1 \times 2 \times 1$ and an energy cutoff of 1000 eV are sufficient to ensure the total energy convergence to within 1 meV/atom.

No.	ω (cm ⁻¹)	mode	No.	$\omega (\text{cm}^{-1})$	mode	No.	$\omega (\text{cm}^{-1})$	mode
1	-0.03	${B_u}^*$	31	147.52	\mathbf{B}_{u}	61	360.34	Au
2	-0.02	${B_u}^*$	32	151.11	\mathbf{B}_{g}	62	360.63	$\mathbf{B}_{\mathbf{g}}$
3	-0.02	A_u^{*}	33	154.72	\mathbf{B}_{u}	63	375.14	Ag
4	65.49	\mathbf{B}_{u}	34	172.10	A_u	64	376.61	\mathbf{B}_{u}
5	73.79	$\mathbf{B}_{\mathbf{g}}$	35	176.42	$\mathbf{B}_{\mathbf{u}}$	65	392.33	$\mathbf{B}_{\mathbf{u}}$
6	78.64	A_u	36	181.01	$\mathbf{B}_{\mathbf{g}}$	66	423.60	\mathbf{B}_{g}
7	82.40	A_u	37	192.22	\mathbf{B}_{u}	67	471.68	A_u
8	84.23	\mathbf{B}_{u}	38	193.25	A_{g}	68	473.36	Ag
9	88.77	Ag	39	195.24	A_u	69	493.50	Ag
10	94.22	$\mathbf{B}_{\mathbf{g}}$	40	197.11	$\mathbf{B}_{\mathbf{g}}$	70	494.66	$\mathbf{B}_{\mathbf{u}}$
11	97.51	$\mathbf{B}_{\mathbf{g}}$	41	243.90	A_u	71	497.05	A_u
12	98.44	A_u	42	246.69	Ag	72	498.48	$\mathbf{B}_{\mathbf{g}}$
13	100.51	\mathbf{B}_{u}	43	254.64	A_u	73	736.43	$\mathbf{B}_{\mathbf{u}}$
14	103.76	\mathbf{B}_{u}	44	256.09	A_{g}	74	740.55	\mathbf{B}_{g}
15	104.39	Ag	45	262.67	\mathbf{B}_{u}	75	741.98	Ag
16	109.51	A_u	46	264.34	A_u	76	744.57	A_u
17	112.76	\mathbf{B}_{u}	47	265.45	\mathbf{B}_{u}	77	775.75	\mathbf{B}_{g}
18	113.98	$\mathbf{B}_{\mathbf{g}}$	48	269.10	A_u	78	775.78	\mathbf{B}_{u}
19	114.05	Ag	49	270.77	A_{g}	79	803.59	Ag
20	119.54	\mathbf{B}_{u}	50	279.63	$\mathbf{B}_{\mathbf{g}}$	80	805.99	\mathbf{B}_{u}
21	119.97	A_u	51	281.72	$\mathbf{B}_{\mathbf{g}}$	81	807.40	A_u
22	121.05	$\mathbf{B}_{\mathbf{g}}$	52	283.42	A_{g}	82	816.15	A_u
23	129.32	A_{g}	53	302.86	\mathbf{B}_{u}	83	821.40	$\mathbf{B}_{\mathbf{g}}$
24	132.53	A_u	54	310.57	$\mathbf{B}_{\mathbf{g}}$	84	821.86	Ag
25	133.96	A_{g}	55	312.83	A_{g}	85	823.30	$\mathbf{B}_{\mathbf{u}}$
26	137.84	\mathbf{B}_{g}	56	313.03	\mathbf{B}_{u}	86	850.73	\mathbf{B}_{u}
27	142.62	A_u	57	316.44	A_u	87	850.91	\mathbf{B}_{g}
28	142.88	B_{u}	58	320.24	$\mathbf{B}_{\mathbf{g}}$	88	852.71	Ag
29	144.93	A_{g}	59	354.01	A_u	89	853.37	A_u
30	145.19	$\mathbf{B}_{\mathbf{g}}$	60	354.53	A_{g}	90	883.73	$\mathbf{B}_{\mathbf{g}}$

Table S2. Vibrational modes and their corresponding frequencies of the α -SrGeO₃ crystal

*Acoustic modes

The Raman-active modes are highlighted in red.

Fig. S4 Nine characteristic Raman vibrational modes of the α -SrGeO₃ crystal. All of the modes are the A_g mode; all of the frequencies are the computational values given in Table S2.