Supplementary Information

Ion	Coordination number (CN)	Ionic radius (Å)
Ga ³⁺	6	0.62
Ge ⁴⁺	6	0.39
Zn^{2+}	6	0.74
Cr ³⁺	6	0.615

 Table S1. Ionic radii for cation ions under corresponding coordination numbers.

Table S2. Main parameters of processing and refinement of CaZrTaGa_{1-2x}Ge_xZn_xO₇:0.01Cr³⁺

(x = 0 - 0.5).

Sample	x = 0	x = 0.1	<i>x</i> = 0.2	x = 0.3	x = 0.4	x = 0.5
Space group	<i>P2/c</i>	<i>P2/c</i>	<i>P2/c</i>	<i>P2/c</i>	<i>P2/c</i>	<i>P2/c</i>
<i>a</i> (Å)	12.7070	12.6966	12.6778	12.6826	12.6799	12.6759
<i>b</i> (Å)	7.3596	7.3322	7.3446	7.3506	7.3457	7.3489
<i>c</i> (Å)	11.4500	11.4182	11.4216	11.4276	11.4238	11.4264
$V(Å^3)$	1051.369	1044.772	1044.104	1046.009	1044.616	1045.133
β (°)	100.928	100.615	100.962	100.930	100.964	100.922
R_{wp} (%)	7.34	9.87	6.47	8.69	8.62	8.45
R_{p} (%)	5.37	5.89	4.37	6.23	5.87	6.75
χ^2	1.821	1.425	1.432	1.627	1.634	1.892

Table S3. Emission intensity ratio of 423 K and 298 K (I_{423}/I_{298}) and quantum efficiency (IQE and EQE) for some Cr³⁺-doped phosphors with emission wavelength in 760-850 nm, as well as NIR output power and conversion efficiency of the corresponding fabricated *pc*-LEDs.

No.	Phosphor	λ _{em} (nm)	FWHM (nm)	IQE (%)	I ₄₂₃ /I ₂₉₈ (%)	Ref
1	$Na_3In_2Li_3F_{12}{:}Cr^{3+}$	778	121	33	44	1
2	$La_3Sc_2Ga_3O_{12}{:}Cr^{3+}$	818	145	35	60	2
3	ScBO ₃ :Cr ³⁺	800	120	65	51	3
4	BaMgAl ₁₀ O ₁₇ :Cr ³⁺	762	92.6	94	53	4
5	GaTaO ₄ :Cr ³⁺	850	266	82.6	73	5
6	$Ca_2LuZr_2Al_3O_{12}:Cr^{3+}$	780	117	69.1	60	6
7	$Gd_{3}Zn_{0.8}Ga_{3.4}Ge_{0.8}O_{12}$: Cr^{3+}	800	105	79.6	40.2	7
8	$Gd_3In_2Ga_3O_{12}{:}Cr^{3+}$	780	124	85.3	87.7	8
9	CZTGGZO: 0.01Cr ³⁺ phosphor	812	250.39	94.37	88.56	This work
10	CZTGGZO: 0.01Cr ³⁺ PiG film	812	248.37	90.20	92.34	This work

According to the Tanabe-Sugano plot, the energy level distribution of Cr^{3+} at octahedral positions is displayed. Therefore, the corresponding crystal field parameters of Cr^{3+} are calculated as follows (Figure S3)⁹:

$$D_{q} = \frac{E(\uparrow)}{10}$$
(S1)

$$B = D_q \frac{x^2 - 10x}{15(x - 8)}$$
(S2)

$$x = \frac{E({}^{4}T_{1} - {}^{4}T_{2})}{D_{q}}$$
(S3)

where D_q is the crystal field strength, *B* is the Racah parameter denoting the repulsive force between electrons in the three-dimensional orbitals, and E denotes the energy difference between the ⁴T₁ and ⁴T₂ energy levels determined by the positions of the ⁴T₁(⁴F) and ⁴F₂(⁴F) peaks. When *x* = 0.4 and D_q/B =2.9, it indicates that the octahedral site where Cr³⁺ is located favors broadband emission of Cr³⁺.

The Kubelka-Munk equation is used to determine the band gap of the sample^{2, 10}:

$$F(R) = \frac{(1-R)^2}{2R}$$
(S4)

$$Ahv = c(hv - E_g)^{\frac{1}{2}}$$
(S5)

$$[h\nu F(R_{\infty})]^2 = A(h\nu - E_g)$$
(S6)

where E_g is the optical band gap, c is the absorption constant, hv is the photon energy, and R is the reflection coefficient. The E_g value was calculated as 1.64 eV for CZTGO: 0.01Cr³⁺ as shown in Figure S2c.

The decay curves of the phosphor and PiG film monitored at 827 nm under 461 nm excitation can be fitted according to the following equations¹¹:

$$I(t) = I_0 + A_1 \exp(-\frac{t}{t_1}) + A_2 \exp(-\frac{t}{t_2})$$
(S7)

Where *t* is the time, A_1 and A_2 stand for constants, and I(t) and I_0 represent the luminous intensity at times t and 0. Then, the lifetime of the luminescent center can be calculated by the following equation^{11, 12}:

$$\tau = \frac{\int_{0}^{\infty} tI(t)dt}{\int_{0}^{\infty} I(t)dt}$$
(S8)

Where τ is the fluorescence lifetime.

Equation S9 fits the energy difference ΔE_a , as well as activation energy, between the lowest excited state and the crossover point location¹³.

$$I_{T} = \frac{I_{0}}{1 + c * \exp(-\frac{E_{a}}{kT})}$$
(S9)

where C is a constant that is independent of temperature, k is the Boltzmann constant, and I_0 and I_t are, respectively, the starting and the intensity of luminescence at temperature T.

The luminescent spectra for QE measurement (S_1 part) were only recorded till 850 nm due to the range limitation of the instrument. The missing S_2 part (850–1100) should be taken into consideration for the actual IQE. Therefore, the actual IQE can be calculated via the following equation¹⁴:

$$IQE = IQE_m \times (S_1 + S_2) / S_1 \tag{S4}$$

where IQE and IQE_m are the actual IQE and measured IQE. S_1 (550–850 nm) and S_2 (850–1100 nm) are integrated intensities, which are obtained from PL spectra. The actual IQEs of CaZrTaGa_{0.2}Ge_{0.4}Zn_{0.4}O₇:0.01Cr³⁺ phosphor and PiG film are determined to be 55.67% and 54.12%, respectively.

Figure S1. (a) Projection of the crystal structure of CaZrTaGaO₇ along the z axis. (b) XRD patterns of the CaZrTaGa_{1-2x}Ge_xZn_xO₇:0.01Cr³⁺ samples (x = 0-0.5). (c) - (f) Rietveld refinement results of the synthesized CaZrTaGa_{1-2x}Ge_xZn_xO₇:0.01Cr³⁺ (x = 0.1, 0.2, 0.3, 0.5).

Figure S2. (d) Infrared thermal images of 20 s are taken at a laser power of 1-4 W under blue LD conditions.

Figure S3. The Tanabe–Sugano diagram.

Figure S4. Comparison between IQE measuring spectra and PL spectra for $CaZrTaGa_{0.2}Ge_{0.4}Zn_{0.4}O_7:0.01Cr^{3+}$ phosphor and PiG film.

References

1. Nie, W.; Li, Y.; Zuo, J.; Kong, Y.; Zou, W.; Chen, G.; Peng, J.; Du, F.; Han, L.; Ye, X., Cr^{3+} -activated Na₃X₂Li₃F₁₂ (X = Al, Ga, or In) garnet phosphors with broadband NIR emission and high luminescence efficiency for potential biomedical application. *Journal of Materials Chemistry C* **2021**, *9* (42), 15230-15241.

2. Bai, B.; Dang, P.; Huang, D.; Lian, H.; Lin, J., Broadband Near-Infrared Emitting $Ca_2LuScGa_2Ge_2O_{12}:Cr^{3+}$ Phosphors: Luminescence Properties and Application in Light-Emitting Diodes. *Inorg Chem* **2020**, *59* (18), 13481-13488.

3. Shao, Q.; Ding, H.; Yao, L.; Xu, J.; Liang, C.; Jiang, J., Photoluminescence properties of a ScBO₃:Cr³⁺ phosphor and its applications for broadband near-infrared LEDs. *RSC Advances* **2018**, *8* (22), 12035-12042.

4. You, L.; Tian, R.; Zhou, T.; Xie, R.-J., Broadband near-infrared phosphor BaMgAl₁₀O₁₇:Cr³⁺ realized by crystallographic site engineering. *Chemical Engineering Journal* **2021**, *417*, 129224.

5. Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; You, S.; Brgoch, J.,

Efficient Broadband Near - Infrared Emission in the GaTaO₄:Cr³⁺ Phosphor.

Advanced Optical Materials **2021**, *10* (2), 2101800.

6. Zhang, L.; Zhang, S.; Hao, Z.; Zhang, X.; Pan, G.-h.; Luo, Y.; Wu, H.; Zhang, J., A high efficiency broad-band near-infrared Ca₂LuZr₂Al₃O₁₂:Cr³⁺ garnet phosphor for blue LED chips. *Journal of Materials Chemistry C* **2018**, *6* (18), 4967-4976.

7. Wang, Y.; Wang, Z.; Wei, G.; Yang, Y.; He, S.; Li, J.; Shi, Y.; Li, R.; Zhang, J.; Li, P., Ultra-Broadband and high efficiency Near-Infrared $Gd_3Zn_xGa_5_{2x}Ge_x O_{12}:Cr^{3+}$ (x = 0-2.0) garnet phosphors via crystal field engineering. *Chemical Engineering Journal* **2022**, *437*, 135346.

8. Li, C.; Zhong, J.; Jiang, H.; Shi, P., Efficient and thermally stable broadband near-infrared emission in a garnet Gd₃In₂Ga₃O₁₂:Cr³⁺ phosphor. *Dalton Transactions* **2022**, *51* (43), 16757-16763.

9. Liu, G.; Molokeev, M. S.; Lei, B.; Xia, Z., Two-site Cr^{3+} occupation in the MgTa₂O₆:Cr³⁺ phosphor toward broad-band near-infrared emission for vessel visualization. *Journal of Materials Chemistry C* **2020**, 8 (27), 9322-9328.

10. Shi, R.; Miao, S.; Zhang, Y.; Lv, X.; Chen, D.; Liang, Y., Blue-light-

excitable pure and efficient short-wave infrared luminescencevia $Cr^{3+} \rightarrow Yb^{3+}$ energy

transfer in a KYbP₂O₇:Cr³⁺phosphor. *Journal of Materials Chemistry C* **2023**, *11* (7), 2748-2755.

11. Jin, Y.; Zhou, Z.; Ran, R.; Tan, S.; Liu, Y.; Zheng, J.; Xiang, G.; Ma, L.; Wang, X. j., Broadband NIR Phosphor Ca₂LuScAl₂Si₂O₁₂:Cr³⁺ for NIR LED Applications. *Advanced Optical Materials* **2022**, *10* (24), 2202049.

12. Zhong, J.; Zhuo, Y.; Du, F.; Zhang, H.; Zhao, W.; Brgoch, J., Efficient and Tunable Luminescence in $Ga_{2-x}In_xO_3:Cr^{3+}$ for Near-Infrared Imaging. *ACS Appl Mater Interfaces* **2021**, *13* (27), 31835-31842.

13. Zeng, H.; Zhou, T.; Wang, L.; Xie, R.-J., Two-Site Occupation for Exploring Ultra-Broadband Near-Infrared Phosphor-Double-Perovskite La2MgZrO6:Cr3+. *Chemistry of Materials* **2019**, *31* (14), 5245-5253.

14. Liu, D.; Li, G.; Dang, P.; Zhang, Q.; Wei, Y.; Qiu, L.; Lian, H.; Shang, M.; Lin, J., Valence conversion and site reconstruction in near-infraredemitting chromium-activated garnet for simultaneous enhancement of quantum efficiency and thermal stability. *Light Sci Appl* **2023**, *12* (1), 248.