Achieving Color-tunable Luminescence in CaF₂: Eu Phosphor for Multimode Anti-counterfeiting

Linglu Kuang^a, Feng Zhang^b, Jian Zhang^a, Xiaodie Zhu^a, Xu Tian^c, Jianxiong Shao^d, Yichun Liu^{a*}, Xuhui Xu^a, Zhichao Liu^{a*},

^a Yunnan Joint International Laboratory of Optoelectronic Materials and Devices, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China

^b School of Future Technology, Henan University, Kaifeng 475001, Henan, China

^c School of Materials and Energy, Yunnan University, Kunming 650504, Yunnan, China

^d Department of Modern Physics, Lanzhou University, Lanzhou 730000, Lanzhou, China.

* Corresponding Author: Zhichao Liu, E-mails: <u>liuzhichzo1028@126.com</u>

Yichun Liu, E-mails: <u>spsjtu@163.com</u>

Fig. S1. Time luminescence decay curves of CaF_2 : 0.5% Eu under the emissions at 592 and 441 nm, respectively.

Fig. S2. XPS spectra of CaF₂: 0.5% Eu: (a) survey, (b) high-resolution scans of Eu 3d.

Fig. S3. The schematic diagram of the Eu^{3+} self-reduction principle.

Fig. S4. Schematic diagram depicting the ML measurement for the CaF₂: x% Eu³⁺ @ PDMS (x = 0.1, 0.25, 0.5%, 0.75, and 1) film.

Fig. S5. The response speed of CaF₂: 0.5% Eu @ PDMS to mechanical stimuli.

Fig. S6. XPS spectra of CaF₂:0.5%Eu before and after x-ray irradiation.

Fig. S7. (a) The band structure, (b) the total DOS and partial DOS of the CaF_2 host.

Fig. S8. (a) The mechanism of RPL phenomenon. (b) Standing for different times after X-ray irradiation.