Supplementary Information

Anion-induced chiral assembly: construction of Ag(I) coordination polymers for photocatalytic degradation of organic dyes

Chao Huang*, Jin-Xia Liang and Bi-Xue Zhu*

Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China

*E-mail: chuang1@gzu.edu.cn (C. Huang); bxzhu@gzu.edu.cn (B.-X. Zhu)

Fig. S2. ¹³C NMR for L.

Fig. S4. IR spectra for CP 3.

Fig. S5. IR spectra for CP 4.

Fig. S6. IR spectra for CP 5.

Fig. S7. IR spectra for CP 6.

Fig. S8. IR spectra for CP 7.

Fig. S9. IR spectra for CP 8.

Fig. S10. IR spectra for CP 9.

Fig. S11. CD spectra of CPs 1a and 1b (a), 2a and 2b (b), and 3a and 3b (c) in MeCN solution.

Fig. S13. TGA curves for CPs 1–5.

Fig. S14. TGA curves for CPs 6–9.

Fig. S16. UV–Vis diffuse-reflectance spectra of Kubelka-Munk functions vs. Energy for CPs 1–9.

Fig. S17. PXRD patterns of CPs 2, 4, and 9 after immersion in different aqueous solutions.

S10

Fig. S18. Kinetic fitting curves of degradation reaction of RhB (a) and MB (b) in the presence of CP 4.

Fig. S19. Proposed mechanism for the photocatalytic degradation process of RhB and MB in water.

Fig. S20. UV–Vis spectra of RhB in the presence of CP 4, H₂O₂, and 0.2 mLof TBA under UV irradiation.

Fig. S21. Fully scanned X-ray photoelectron spectroscopy (XPS) of CPs 2 (a), 4 (b), and 9 (c) before and after the photocatalytic degradation reaction.
Table S1. Selected bond distances (Å) and angles (°) for CP 2–9.

CP 2a					
Ag1-N5	2.267(3)	N5-Ag1-N5a	142.30(18)	N5-Ag1-N1b	106.46(12)
Ag1–N5a	2.267(3)	N5a-Ag1-N1b	98.10(12)	N5-Ag1-N1c	98.10(12)
Ag1-N1c	2.423(3)	N5a-Ag1-N1c	106.46(12)	N1c-Ag1-N1b	97.92(17)
Ag1-N1b	2.423(3)				
CP 2b					
Ag1–N1a	2.422(3)	N1a-Ag1-N1b	98.01(15)	N5c-Ag1-N1b	106.22(11)
Ag1-N1b	2.422(3)	N5-Ag1-N1a	106.22(11)	N5-Ag1-N1b	98.10(11)
Ag1-N5	2.266(3)	N5c-Ag1-N1a	98.10(11)	N5-Ag1-N5c	142.63(15)
Ag1-N5c	2.266(3)				
CP 3a					
Ag1-N1a	2.432(3)	N1a-Ag1-N1b	97.14(16)	N5-Ag1-N1a	98.19(12)
Ag1-N1b	2.432(3)	N5-Ag1-N1b	106.29(12)	N5c-Ag1-N1a	106.29(11)
Ag1-N5	2.268(3)	N5c-Ag1-N1 b	98.19(12)	N5-Ag1-N5c	142.73(17)
Ag1-N5c	2.268(3)				
CP 3b					
Ag1-N1a	2.433(4)	N1a-Ag1-N1b	97.06(18)	N5c-Ag1-N1b	98.37(14)
Ag1-N1b	2.433(4)	N5-Ag1-N1a	98.37(14)	N5c-Ag1-N1a	106.31(14)
Ag1-N5	2.262(3)	N5-Ag1-N1b	106.31(14)	N5-Ag1-N5c	142.4(2)
Ag1-N5c	2.262(3)				
CP 4					
Ag1-N1a	2.411(4)	N1a-Ag1-N10b	96.43(15)	N6-Ag1-N5	135.90(14)
Ag1-N6	2.268(4)	N6-Ag1-N1a	115.44(14)	N5-Ag1-N1a	98.71(14)
Ag1-N5	2.293(4)	N6-Ag1-N10b	99.48(14)	N5-Ag1-N10b	103.68(15)

Ag1-N10	2.436(4)				
CP 5					
Ag1-N5	2.284(3)	N5-Ag1-N1a	95.15(13)	N6-Ag1-N5	137.02(14)
Ag1-N1a	2.436(4)	N5-Ag1-N10b	102.97(15)	N6-Ag1-N1a	117.43(13)
Ag1-N6	2.255(3)	N1a-Ag1-N10b	94.76(14)	N6-Ag1-N10b	101.43(14)
Ag1-N10b	2.444(4)				
CP 6					
Ag1-N5	2.294(4)	N5-Ag1-N10b	115.47(17)	N6-Ag1-N10b	98.58(16)
Ag1-N6	2.285(5)	N5-Ag1-N1a	98.10(17)	N6-Ag1-N1a	104.35(17)
Ag1-N10b	2.420(5)	N6-Ag1-N5	136.80(16)	N10b-Ag1-N1a	95.77(16)
Ag1-N1a	2.450(5)				
CP 7					
Ag1-N1a	2.441(3)	N5-Ag1-N1a	101.09(11)	N5-Ag1-N10b	110.65(10)
Ag1-N5	2.269(3)	N6-Ag1-N1a	109.41(11)	N6-Ag1-N5	131.83(11)
Ag1-N6	2.259(3)	N6-Ag1-N10b	103.35(10)	N10b-Ag1-N1a	94.35(10)
Ag1-N10b	2.418(3)				
CP 8					
Ag1-N1a	2.460(3)	N1a-Ag1-N10b	98.18(9)	N5-Ag1-N1a	97.75(10)
Ag1-N5	2.261(3)	N5-Ag1-N10b	98.07(10)	N6-Ag1-N1a	111.09(10)
Ag1-N6	2.237(3)	N6-Ag1-N5	141.68(10)	N6-Ag1-N10b	102.02(10)
Ag1-N10b	2.491(3)				
CP 9					
Ag1-O2a	2.265(6)	O2-Ag1-O2a	122.0(4)	O2a-Ag1-N1	119.5(2)
Ag1-O2	2.265(6)	O2-Ag1-N1	101.0(3)	O2a-Ag1-N1a	101.0(3)
Ag1-N1	2.408(7)	O2-Ag1-N1a	119.5(2)	N1-Ag1-N1a	90.6(3)
Ag1-N1a	2.408(7)	N5-Ag2-N5b	180.0		
Ag2-N5	2.163(7)				
Ag2–N5a	2.163(7)				

Symmetry codes: a) 1–*x*, *y*, –1–*z*, b) –1/2+*x*, –1/2+*y*, –1+*z*, c) 3/2–*x*, –1/2+*y*, –*z* for CP **2a**; a) 3/2–*x*, 1/2+*y*, 2–*z*, b) 1/2+*x*, 1/2+*y*, 1+*z*, c) 2–*x*, *y*, 3–*z* for CP **2b**; a) –1/2+*x*, –1/2+*y*, –1+*z*, b) 3/2–*x*, –1/2+*y*, –*z*, c) 1–*x*, *y*, –1–*z* for CP **3a**; a) 1/2+*x*, 1/2+*y*, 1+*z*, b) 3/2–*x*, 1/2+*y*, 2–*z*, c) 2–*x*, *y*, 3–*z* for CP **3b**; a) *x*, 1+*y*, *z*, b) 2–*x*, 2–*y*, 1–*z* for CP **4**; a) 1+*x*, *y*, *z*, b) 2–*x*, 2–*y*, –*z* for CP **5**; a) 2–*x*, 2–*y*, –*z*, b) *x*, 1+*y*, *z* for CP **6**; a) 2–*x*, 2–*y*, 1–*z*, b) *x*, 1+*y*, *z* for CP **7**; a) –1+*x*, *y*, *z*, b) –*x*, –*y*, –*z* for CP **8**; a) 1–*x*, *y*, 3/2–*z*, b) 2–*x*, –1–*y*, 1–*z* for CP **9**.