## Electronic supplementary information

# Electrically-pumped WGM microlaser realized in n-AlGaN/n-

## ZnO:Ga microwire/Pt/MgO/p-GaN

### double heterojunction device

Kai Xu, Peng Wan, Maosheng Liu, Daning Shi, Caixia Kan,\* and Mingming Jiang\*

College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Road, Nanjing 211106, China.

#### \*Corresponding authors:

Caixia Kan (Email: cxkan@nuaa.edu.cn);

Mingming Jiang (Email: mmjiang@nuaa.edu.cn).

| GaN                         | parameters                                         |
|-----------------------------|----------------------------------------------------|
| Growth substrate            | PSS single 430+/-25um                              |
| Growth direction            | Grow along the (0001) direction (C plane)          |
| Undoped GaN layer thickness | 3.5 μm                                             |
| p-GaN layer thickness       | 2.5 μm                                             |
| p-type layer doping element | Mg (30%)                                           |
| Hole concentration          | $4.05 \times 10^{18} \mathrm{cm}^{-3}$             |
| AlGaN                       | parameters                                         |
| n-type layer doping element | Si                                                 |
| Al content                  | 45%                                                |
| Electron mobility           | 30 cm <sup>2</sup> V <sup>-1</sup> S <sup>-1</sup> |
| Electron concentration      | $1.05 \times 10^{19} \mathrm{cm}^{-3}$             |

Table S1 | Structure parameters of p-GaN and n-AlGaN layers.

#### Supplementary Section S1 | The measurement setup.



Figure S1. The schematic view of the measurement equipment and optical path.

Supplementary Section S2 | Photograph of the carefully-fabricated n-AlGaN/n-ZnO:Ga MW/Pt/MgO/p-GaN double heterostructure device.



**Figure S2.** (a) Optical photograph of a real double heterostructure diode. (b) Magnified view of the single ZnO:Ga MW on the Si substrate.