Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Enhanced Light-Emitting Transistors Utilizing Multi-Dimensional

CsPbBr₃ Perovskite Films and PVP-Modified ZTO Semiconductor

Layers

Xingyu Zhang¹, Min Guo¹, Jia Li¹, Bo Song¹, Fanwen Meng¹, Zitong Wang², Zhidong Lou¹, Yanbing Hou¹, Yufeng Hu^{1*}, and Feng Teng^{1*}

1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, P.R. China

2 High School Attached to Northeast Normal University, Changchun, 130117, P.R. China E-mail: yfhu@bjtu.edu.cn, fteng@bjtu.edu.cn

Key Words: Multi-dimensional perovskite film; Light emitting transistor; CsPbBr₃; PVP modification; Metal oxide semiconductor

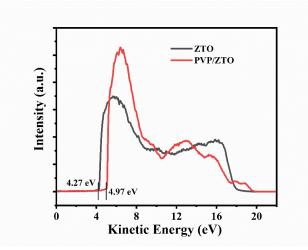


Figure S1 UPS spectrum of ZTO surface before and after PVP modification.

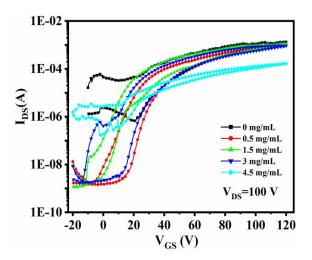


Figure S2 Transfer curves of devices under different PVP concentrations.

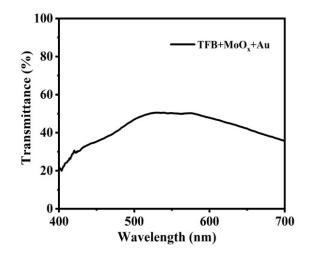


Figure S3 Transmission spectra of TFB, MoO_x and Au.

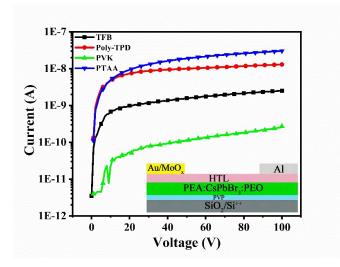


Figure S4 Diode current curve of the device without channel layer.

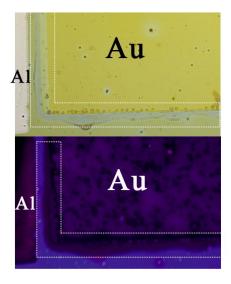


Figure S5 Electrode edge doping after operation of Poly-TPD light-emitting transistor.

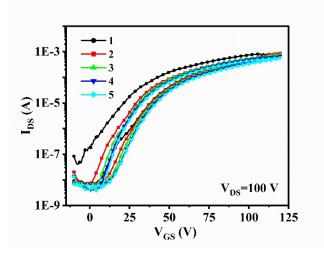
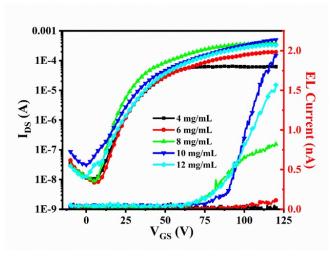



Figure S6 Cyclic scan transfer curve of the device.

Figure S7 Transfer curve and photocurrent curve of the device under different TFB concentrations.

