Supporting Information

Tb(III)-Functionalized MOF Hybridized Bis-crosslinked Networked Hydrogel Luminescent Films for Arginine and Dopamine Hydrochloride Sensing and Anticounterfeiting

Jiaxuan Pan¹, Jiazhen Lu¹, Yichen Shang¹, Ying Li^{1, *}and Bing Yan^{2, *}

¹ School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

² Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

* Correspondence: liying@usst.edu.cn. (Y.Li); byan@tongji.edu.cn (B. Yan)

1. Instruments

Fourier transform infrared (FT-IR) spectra were obtained by using the SPECTRUM 100 instrument provided by PerkinElmer, employing the KBr pellet Pressing method. X-ray photoelectron spectroscopy (XPS) analysis was conducted using the K-Alpha+ instrument from Thermo Fisher Scientific. The X-ray source utilized was a monochromatic Al K α source. Scanning electron microscopy (SEM) measurements and energy-dispersive spectroscopy (EDS) were performed using a Sigma 300 instrument with an accelerating voltage of 10 kV. The RF-5301 fluorescence spectrophotometer provided by Shimadzu Corporation, Japan, was employed to acquire excitation and emission spectra. A steady-state transient fluorescence spectrometer (Edinburgh FLS1000) was used to obtain the fluorescence lifetime and quantum yield data. X-ray diffraction (XRD) analysis utilized a BRUKER-supplied D8 ADVANCE instrument with monochromatic Cu K α excitation. Data were acquired at a 2° min⁻¹ scanning rate within the 5° < 20 < 25° range. A steadystate transient fluorescence spectrometer (Edinburgh FLS1000) was used to obtain the fluorescence lifetime and quantum fluorescence to obtain the fluorescence lifetime and puantum fluorescence spectrometer fluorescence A steadystate transient fluorescence spectrometer (Edinburgh FLS1000) was used to obtain the

2.Supporting Figures and Tables

Figure S1(a) XRD patterns of Eu-MOF and Simulated Eu-MOF. (b)Eu-MOF@PVA/SA

and Eu-MOF

S3

Figure S2 (a). SEM picture of Eu-MOF, (b). EDS energy spectra of Tb@Eu-MOF@PVA/SA

Figure S3: the simulated 3D structure of Eu-MOF (CCDC:862207)

Figure S4 XPS spectra of Eu-MOF@PVA/SA and Tb@Eu-MOF@PVA/SA

Figure S5. (a) Excitation spectra of Eu-MOF@PVA/SA, (b) The emission spectrum of

Tb@Eu-MOF@PVA/SA ($\lambda ex = 260 \text{ nm}$).

Figure S6 Jablonsky level diagrams of Eu-MOF.

Figure S7 schematic diagram of the antenna effect of the ligand with Tb3⁺

Figure S8 Comparison of fluorescence intensity of Tb@Eu-MOF@PVA/SA in different PH solutions.

Figure S9 The fluorescence changes of Tb@Eu-MOF@PVA/SA on days 1, 3, 5, and 7in the air at room temperature.

Figure S10 (a) Emission spectra (λex = 260 nm) of Tb@Eu-MOF@PVA/SA in various species solution

Figure S11 The XRD patterns of Eu-MOF with the DH treatment

Figure S12 LUMO and HOMO orbitals of the H₄BTEC and DQ model.

Figure S13 Lifetime decay curves of Tb@Eu-MOF@PVA/SA at 611 nm in the absence and presence of DH

Figure S14 Emission spectra ($\lambda ex = 260 \text{ nm}$) of Eu-MOF with Arg and without Arg

Figure S15 Lifetime decay curves of Tb@Eu-MOF@PVA/SA at 540 nm in the absence

and presence of Arg

Figure S16 (a)Tensile stress-strain curve of Tb@Eu-MOF@PVA/SA, (b)Stress-strain

curve of Tb@Eu-MOF@PVA/SA at 80 % compression variable

Figure S17 photos of Tb@Eu-MOF@PVA/SA stretching process.

Original Compress of 80% Recovery

Figure S18 photos of Tb@Eu-MOF@PVA/SA compression and recovery process

detection and (b)Ar

Material	Element	Weight%
	C	69.58
	0	23.31
	Eu	1.09
Tb@Eu-MOF@PVA/SA	Тb	6.02

Table S1 Analysis report of the EDS energy spectra of Tb@Eu-MOF@PVA/SA.