Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Layered Cs₃Bi₂I₉ perovskite nanosheets on TiO₂ nanorods for high performance heterostructure photodetectors

Gunasekaran A^a, Sadhasivam S^{a b}, Gowthambabu V^a, Anbarasan N^a, Jeganathan K^a

Centre for Nanoscience and Nanotechnology, Department of Physics,

Bharathidasan University, Tiruchirappalli- 620 024

School of chemical Engineering, Yeungnam University, Gyeongsan, South Korea-38544

Figure Captions

- Fig.S1. The XRD pattern of Bil₃ which grown on TiO₂ nanorod arrays
- Fig.S2. Cross sectional image of FTO/TiO₂/Cs₃Bi₂I₉ Phototdetector device
- Fig.S3. EDS spectra of the Cs₃Bi₂I₉
- Fig.S4. The Raman spectrum of TiO₂ and TiO₂/Cs₃Bi₂I₉
- Fig.S5. XPS spectra of (a) Survey (b) Ti 2p (c) O 1s
- Fig.S6. Noise equivalent power (NEP) (a) Different illumination intensity and (b) Different wavelength at a power density of (400 nm) 0.23 mW, (450 nm) 0.77 mW, (500 nm) 0.92 mW, (550 nm) 0.99 mW and (600 nm) 1.15 mW.
- Fig.S7. The illumination power vs photocurrent density plot for the photodetector at 2V
- Fig.S8. Schematic Diagram of the device fabrication
- Table ST1: Comparison of various metrics of the photodetectors in details

Fig.S1.

Fig. S2.

Fig. S3.

Fig.S4.

Fig. S5.

Fig. S6.

Fig. S7

Fig. S8.

Device Structure	Туре	Material Structure	Responsivity (A/W)	D*/10 ⁸ Jones	EQE (%)	On/Off Ratio	Response Time/ms	Ref.
TiO ₂ /Cs ₃ Bi ₂ I ₉	Photoconductor	Thin Films	1.1	19.69 ×10 ²	291	3.72	200/400	This Work
ZnO/CsPbI3: PbSe/CuSCN	Photoconductor	Thin Films	9.24	3.17×10^{6}	-	-	76.8/82	1
Graphene– CsPbBr _{3-x} l _x /	Photoconductor	Nanocrystals	8.2×10 ⁸	2.4×10 ⁸	-	-	810/3650	2
CsPbBr ₃	Photoconductor	Thin Films	55	0.9×10 ⁵	16×10 ³	10 ⁵	0.43/0.318	3
Cs ₂ AgBiBr ₆	Photoconductor	Thin Films	0.031	1.87× 104	-	104	0.24/0.29	4
CsPbBr ₃ -ZnO	Photoconductor	Thin Films	4.25	_	-	104	0.21/0.24	5
Cs ₃ Bi ₂ I ₉	Photoconductor	Thin Films	21.8	1.93×10^{5}	4×10 ³	10 ⁵	0.33/0.38	6
ZnO/PbSe:CsPbBr _{1.5} /P 3HT	Photodiode	Nanocrystals	6.16	5.96×10 ¹³	18.22 at 532nm	10 ⁴	350/375	7
CsPbCl ₃	Photoconductor	Nanocrystals	1.89	-	-	10 ³	41/43	8
CsPbBr ₃	Photoconductor	Nano platelets	34	7.5×10^{4}	104	-	0.6/0.9	9
NiO _x /Nb ₂ CT _x /MAPbI ₃ /PCB	photodiode	Thin Films	0.86	1.58×10^{8}	43.92 at		0.02/0.09	10
M/BCP	photodiode		0.23	1.27×10^{8}	656 nm	- 0	0.014/0.002	
CsPbBr ₃	Photoconductor	Nanowires	-	-	-	10 ³	100/100	11
CsPbBr ₃ -Au NCs	Photoconductor	Nanoparticles	0.01	4.56	16.69 at 532 nm	10 ⁶	0.2/1.2	12
CsPb(Br/I) ₃	Photoconductor	Nanorods	-	_	-	10 ³	680/660	13
ZnO/CsSnBr3:P3HT/CuSC N	Photodiode	Nanocrystals	1.56	1.40×10 ⁶	56.42 at 532 nm	-	-	14
CsPbCl ₃	Photoconductor	Micro-wire	0.0143	-	-	2×10 ³	3.212/2.511	15
P3HT:PbS:CsPbBr3/Au/P MMA	Phototransistor	Nanocrystals	182 at 532 nm	1.09×10^{6}	-	-	-	16
CsPbBr ₃	Photoconductor	Single Crystal	2.1	-	-	-	300/5000	17
2D CsPbBr ₃	Photoconductor	Nano sheets	0.64	-	54	10 ⁴	0.019/0.025	18
CsPbBr3	Photoconductor	Microcrystals	60000	10 ⁵	2×10 ⁷	-	0.5/1.6	19
CsPbBr₃	Photoconductor	Nanoribbons	18.4	6.1×10 ⁴	-	8616	8.7/3.5	20
CsPbBr₃	Photoconductor	Nano-sheets	_	_	-	10 ²	17.8/14.7	21
$CsPbBr_3$ – $CsPb_2Br_5$	Photoconductor	Thin Films	0.375	2960	-	380	0.28/0.64	22
PTAA/PEIE/CsPbIBr ₂ /PCB M	Photodiode	Thin Films	0.28	9.7×10 ⁴	57.1	_	2×10 ⁻⁵	23
CsPbX₃/α-Si radial junction	Photodiode	Quantum Dots	0.054	-	50	2.1×10 ³	0.48/1.03	24
spiro- OMeTAD/CsPbBr ₃ /SnO ₂	Photodiode	Microcrystals	0.172	4.8×10 ⁴	-	1.3×10 ⁵	0.14/0.12	25
ZnO/CsPbBr ₃ /GaN	Photodiode	Thin Films	0.23	2.4×10 ⁵	-	10 ⁴	281/104	26
Cs ₃ Sb ₂ Cl ₉	Photoconductor	Nanowires	3616	0.0125	1×10 ³	_	130/230	27
Cs ₂ AgBiBr ₆	Photoconductor	Thin Films	7.01	5660	2×10 ³	2.2×10 ⁴	0.956/0.995	28
Au/(DMEDA)Bil5/Au	Photoconductor	Single crystal	0.015	-	3.67	100	2×10 ⁻⁸ /1.2× 10 ⁶	29

Table S1: The detailed comparison of parameters of perovskite based photodetectors

10

SnO ₂ /Cs ₂ AgBiBr ₆	Photoconductor	Thin Films	0.11	240	40	_	3/2	30
CsPbBr ₃	Photoconductor	Micro particles	0.18	-	41 at 532 nm	8×10 ³	1.8/1.0	31
ZnO/PbSe:ZnO/CsPbBr3: P3HT/P3HT	Photodiode	Quantum Dots	1.4	6.59×10^{6}	56.13 at 532 nm	10 ⁵	1529/156/5	32
CsPbBr ₃	Photoconductor	Microcrystals	2.1	_	485	10 ³	0.25/0.45	33
CsPbl ₃	Photoconductor	Nanocrystals	-	_	-	10 ⁵	24/29	34
CsPbI ₃	Photoconductor	Nanowires	0.0067	1.57	17 at 450 nm	-	292/234	34
CsPbBr ₃	Photoconductor	Single Crystal	2	-	-	10 ³	0.111/0.575	36
CsPbBr ₃ CNTs	Photoconductor	Nano sheets	31.1	_	7×10 ³	832	0.016/0.38	37
CsPbBr ₃ –ZnO NPs	Photoconductor	Thin Films	0.0115	-	-	12.86	409/17.92	38
α–CsPbl ₃ -NaYF ₄ :Yb,Er QDs	Photoconductor	Quantum Dots	1.5	-	-	10 ⁴	5/5	39
MoS ₂ –CsPbBr ₃	Photoconductor	Nano sheets	4.4	250	30.2 at 442 nm	104	0.72/1.01	40

References

- M. Sulaman, S. Yang, H. Guo, C. Li, A. Imran, A. Bukhtiar, M. Qasim, Z. Ge, Y. Song, Y. Jiang and B. Zou, *Chem Sci*, 2024, 15, 8514–8529.
- M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser and T. Mueller, *Nano Lett*, 2012, 12, 2773–2777.
- 3. Y. Li, Z.-F. Shi, S. Li, L.-Z. Lei, H.-F. Ji, D. Wu, T.-T. Xu, Y.-T. Tian and X.-J. Li, J Mater Chem C Mater, 2017, 5, 8355–8360.
- 4. Z. Shuang, H. Zhou, D. Wu, X. Zhang, B. Xiao, G. Ma, J. Zhang and H. Wang, *Chemical Engineering Journal*, 2022, 433, 134544.
- H. Liu, X. Zhang, L. Zhang, Z. Yin, D. Wang, J. Meng, Q. Jiang, Y. Wang and J. You, J Mater Chem C Mater, 2017, 5, 6115– 6122.
- 6. X.-W. Tong, W.-Y. Kong, Y.-Y. Wang, J.-M. Zhu, L.-B. Luo and Z.-H. Wang, ACS Appl Mater Interfaces, 2017, 9, 18977–18985.
- M. Sulaman, S. Yang, A. Bukhtiar, P. Tang, Z. Zhang, Y. Song, A. Imran, Y. Jiang, Y. Cui, L. Tang and B. Zou, *Adv Funct Mater*, DOI:10.1002/adfm.202201527.
- 8. J. Zhang, Q. Wang, X. Zhang, J. Jiang, Z. Gao, Z. Jin and S. (Frank) Liu, RSC Adv, 2017, 7, 36722–36727.
- 9. X. Liu, D. Yu, F. Cao, X. Li, J. Ji, J. Chen, X. Song and H. Zeng, Small, , DOI:10.1002/smll.201700364.
- S. Shafique, A. Qadir, T. Iqbal, M. Sulaman, L. Yang, Y. Hou, Y. Miao, J. Wu, Y. Wang, F. Zheng, X. Wang and Z. Hu, J Alloys Compd, 2024, 1004, 175903.
- 11. J. Chen, Y. Fu, L. Samad, L. Dang, Y. Zhao, S. Shen, L. Guo and S. Jin, Nano Lett, 2017, 17, 460–466.
- 12. Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li and H. Zeng, Small, 2016, 12, 5622–5632.
- 13. X. Tang, Z. Zu, H. Shao, W. Hu, M. Zhou, M. Deng, W. Chen, Z. Zang, T. Zhu and J. Xue, *Nanoscale*, 2016, **8**, 15158–15161.
- 14. M. Sulaman, S. Y. Yang, Z. H. Zhang, A. Imran, A. Bukhtiar, Z. H. Ge, Y. Tang, Y. R. Jiang, L. B. Tang and B. S. Zou, *Materials Today Physics*, 2022, **27**, 100829.
- 15. Y. Li, Z. Shi, L. Lei, Z. Ma, F. Zhang, S. Li, D. Wu, T. Xu, X. Li, C. Shan and G. Du, ACS Photonics, 2018, 5, 2524–2532.
- M. Sulaman, Y. Song, S. Yang, M. Li, M. I. Saleem, P. V. Chandraseakar, Y. Jiang, Y. Tang and B. Zou, *Nanotechnology*, 2020, 31, 105203.
- 17. J.-H. Cha, J. H. Han, W. Yin, C. Park, Y. Park, T. K. Ahn, J. H. Cho and D.-Y. Jung, J Phys Chem Lett, 2017, 8, 565–570.
- 18. J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li and H. Zeng, Advanced Materials, 2016, 28, 4861–4869.
- 19. B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng and K. Han, Advanced Materials, DOI:10.1002/adma.201703758.
- L. Pang, Y. Yao, Q. Wang, X. Zhang, Z. Jin and S. (Frank) Liu, Particle & Particle Systems Characterization, DOI:10.1002/ppsc.201700363.
- L. Lv, Y. Xu, H. Fang, W. Luo, F. Xu, L. Liu, B. Wang, X. Zhang, D. Yang, W. Hu and A. Dong, *Nanoscale*, 2016, 8, 13589– 13596.

- 22. G. Tong, H. Li, D. Li, Z. Zhu, E. Xu, G. Li, L. Yu, J. Xu and Y. Jiang, *Small*, , DOI:10.1002/smll.201702523.
- 23. C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang and F. Gao, *Advanced Materials*, DOI:10.1002/adma.201803422.
- 24. J. Lu, X. Sheng, G. Tong, Z. Yu, X. Sun, L. Yu, X. Xu, J. Wang, J. Xu, Y. Shi and K. Chen, *Advanced Materials*, DOI:10.1002/adma.201700400.
- 25. H. Zhou, J. Zeng, Z. Song, C. R. Grice, C. Chen, Z. Song, D. Zhao, H. Wang and Y. Yan, J Phys Chem Lett, 2018, 9, 2043–2048.
- 26. Z. Song, H. Zhou, P. Gui, X. Yang, R. Liu, G. Ma, H. Wang and G. Fang, J Mater Chem C Mater, 2018, 6, 5113–5121.
- 27. B. Pradhan, G. S. Kumar, S. Sain, A. Dalui, U. K. Ghorai, S. K. Pradhan and S. Acharya, *Chemistry of Materials*, 2018, **30**, 2135–2142.
- 28. L.-Z. Lei, Z.-F. Shi, Y. Li, Z.-Z. Ma, F. Zhang, T.-T. Xu, Y.-T. Tian, D. Wu, X.-J. Li and G.-T. Du, *J Mater Chem C Mater*, 2018, **6**, 7982–7988.
- 29. L. Yao, G. Niu, L. Yin, X. Du, Y. Lin, X. Den, J. Zhang, J. Tang, J. Mater. Chem. C 2020, 8, 1239.
- 30. C. Wu, B. Du, W. Luo, Y. Liu, T. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S. Wang, Z. Chen, Y. Chen and L. Xiao, *Adv Opt Mater*, DOI:10.1002/adom.201800811.
- 31. X. Li, D. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Song and H. Zeng, Adv Funct Mater, 2016, 26, 5903–5912.
- 32. M. Sulaman, S. Yang, A. Imran, Z. Zhang, A. Bukhtiar, Z. Ge, Y. Song, F. Sun, Y. Jiang, L. Tang and B. Zou, ACS Appl Mater Interfaces, 2023, 15, 25671–25683.
- 33. F. Cao, D. Yu, X. Li, Y. Zhu, Z. Sun, Y. Shen, Y. Wu, Y. Wei and H. Zeng, J Mater Chem C Mater, 2017, 5, 7441–7445.
- 34. P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee and J.-S. Lee, Chemical Communications, 2016, 52, 2067–2070.
- A. Waleed, M. M. Tavakoli, L. Gu, S. Hussain, D. Zhang, S. Poddar, Z. Wang, R. Zhang and Z. Fan, Nano Lett, 2017, 17, 4951– 4957.
- 36. J. Song, Q. Cui, J. Li, J. Xu, Y. Wang, L. Xu, J. Xue, Y. Dong, T. Tian, H. Sun and H. Zeng, *Adv Opt Mater*, DOI:10.1002/adom.201700157.
- 37. X. Li, D. Yu, J. Chen, Y. Wang, F. Cao, Y. Wei, Y. Wu, L. Wang, Y. Zhu, Z. Sun, J. Ji, Y. Shen, H. Sun and H. Zeng, *ACS Nano*, 2017, **11**, 2015–2023.
- 38. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang and J. Du, Solar Energy Materials and Solar Cells, 2017, 172, 341–346.
- 39. X. Zhang, Q. Wang, Z. Jin, J. Zhang and S. (Frank) Liu, Nanoscale, 2017, 9, 6278–6285.
- X. Song, X. Liu, D. Yu, C. Huo, J. Ji, X. Li, S. Zhang, Y. Zou, G. Zhu, Y. Wang, M. Wu, A. Xie and H. Zeng, ACS Appl Mater Interfaces, 2018, 10, 2801–2809.