Supporting Information

Diversity-oriented synthesis enables the rapid development of quinoxaline-based bis-boron fluorophores: photophysical properties and sensing applications

Chaochao Jin^a, Jiongpei Zhang^a, Zhihua Wang^{a*}, Daniel B. Werz^{b*} and Jiajing Tan^{a*}

^a College of Chemistry, Beijing University of Chemical Technology (BUCT), Beijing 100029, China

^b DFG Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany; Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany

Table of Content

I. General information
II. Experimental procedure and characterization data
II-1. General procedure for quinoxaline-based ligands4
II-2. General procedure for quinoxaline-based bis-boron complexes
II-3. General procedure for Suzuki-Miyaura coupling of bis-boron complexes8
II-4. General procedure for Sonogashira coupling of bis-boron complexes
II-5. General procedure for Heck coupling of bis-boron complexes
II-6. General procedure for Stille coupling of bis-boron complexes
II-7. General procedure for Buchwald-Hartwig amination of bis-boron complexes 18
II-8. Preparation of ROS and RNS19
II-9. Preparation of 3e-SO from 3e and NaClO19
III. Crystallographic and structural refinement data
IV. Photophysical properties of quinoxaline-based bis-boron complexes
V. Electrochemical studies
VI. DFT calculations
VI. Reference
VII. NMR spectra

I. General information

Unless specified otherwise, all solvents and reactants were purchased from commercial companies, and all reactions were carried out under N2 atmosphere. A Bruker 400 AVANCE III HD spectrometer was operating at 400 MHz, 101 MHz, 376 MHz, and 128 MHz for ¹H, ¹³C, ¹⁹F and ¹¹B acquisitions, respectively. ¹H NMR spectra were recorded by using tetramethylsilane (TMS, 0 ppm) as an internal standard in CDCl₃. ¹³C NMR spectra were recorded by using residual non-deuterated solvents as an internal standard in CDCl₃ (δ =77.16 ppm) or d₆-DMSO (δ =39.52 ppm). ¹⁹F NMR and ¹¹B NMR spectra are unreferenced. High resolution mass spectrums (HRMS) were recorded on an Agilent Q-TOF 6540 mass spectrometer using electrospray ionization. Photoluminescence (PL) spectra, absolute quantum yields, and fluorescence lifetime were collected on a Horiba Jobin Yvon-Edison Fluoromax-4 fluorescence spectrometer and FLS 980 fluorescence spectrophotometer (Edinburgh Instruments Ltd, UK) with a calibrated integrating sphere system. The X-ray diffraction data were collected on an Agilent X calibur Eos diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) using the ω -2 θ scan mode. The thermal gravimetric analysis (TGA) measurements were performed on a TA instruments Q500 from room temperature to 600 °C at a rate of 5°C/min under nitrogen atmosphere. Crystallographic data for 3b, 3c, and 3k reported in this paper have been deposited in the Cambridge Crystallographic Data Centre. (Deposition number: 3b 2329222, 3c 2329220, and 3k 2329221). DFT calculations were conducted on Gaussian 09 program at the B3LYP-D3(BJ)/6-31G(d) basis sets.

II. Experimental procedure and characterization data II-1. General procedure for quinoxaline-based ligands¹

To a 500 mL round-bottom flask equipped with a stir bar was charged with diethyl oxalate (20 mmol, 1.0 equiv.), ethyl acetate (60.0 mmol, 3.0 equiv.) and toluene (60 mL), and then NaH (50.0 mmol, 2.5 equiv., 60% in mineral oil) was added slowly into the mixture at 0 °C in an ice bath. The reaction mixture was heated at 80 °C for 3 hours. After the completion of the reaction, the reaction was quenched with water (2 mL) and then extracted with ethyl acetate (3×50 mL), and adjust pH to 5 with 1 mol/L hydrochloric acid, then washed with brine (3×20 mL). The combined organic layer was dried by Na₂SO₄ and concentrated under reduced pressure. The crude products were used for next step without any further purification. The crude product (1.2 equiv.) and corresponding aromatic diamine (5 mmol, 1.0 equiv.) was refluxed in anhydrous EtOH overnight. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (PE/EA = 10:1) to give the products (**1a-1c**).

Diethyl 2,2'-(quinoxaline-2,3-diyl)diacetate (1a)

Yellow solid, 4.24 g, 70% yield (PE: EA = 10:1 as the eluent). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, *J* = 6.3, 3.5 Hz, 2H), 7.73 (dd, *J* = 6.4, 3.4 Hz, 2H), 4.22 (q, *J* = 7.2 Hz, 4H), 4.15 (s, 4H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.56, 149.75, 141.35, 129.90, 128.85, 61.51, 42.15, 14.19. HRMS (ESI) calcd for C₁₆H₁₉N₂O₄⁺ [M+H]⁺ = 303.1339, found 303.1343. Diethyl 2,2'-(6-bromoquinoxaline-2,3-diyl)diacetate (1b)

Yellow solid, 5.03g, 65% yield (PE: EA = 8:1 as the eluent).

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 2.1 Hz, 1H), 7.91 (d, *J* = 9.0 Hz, 1H), 7.81 (dd, *J* = 8.9, 2.2 Hz, 1H), δ 4.21 (q, *J* = 7.1 Hz, 4H), 4.12 (d, *J* = 3.1 Hz, 4H), 1.28 (t, *J* = 7.1 Hz, 3H, CH₃ in Et), 1.27 (t, *J* = 7.1 Hz, 3H, CH₃ in Et).

¹³C NMR (101 MHz, CDCl₃) δ 169.39, 150.84, 150.21, 141.96, 140.15, 133.53, 131.29, 130.26,

123.90, 61.68, 42.16, 14.25.

HRMS (ESI) calcd for $C_{16}H_{18}BrN_2O_4^+$ [M+H]⁺ = 381.0444, found 381.0452.

Diethyl 2,2'-(6,7-dibromoquinoxaline-2,3-diyl)diacetate (1c)

Brown solid, 4.97 g, 54% yield (PE: EA = 8:1 as the eluent).

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 2H), 4.22 (q, *J* = 7.1 Hz, 4H), 4.11 (s, 4H), 1.28 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.20, 151.26, 140.62, 133.06, 126.60, 61.77, 42.17, 14.27. HRMS (ESI) calcd for C₁₆H₁₆Br₂N₂O₄⁺ [M+H]⁺ = 458.9550, found 458.9552.

II-2. General procedure for quinoxaline-based bis-boron complexes²

To **1a-1c** (5 mmol) in toluene was added HMDS (3.0 equiv.), and the mixture was stirred for 10 minutes before boron trifluoride etherate (5.0 equiv.) was added via syringe. The reaction mixture was stirring at 80°C for 4 hours. After cooling down to room temperature, the reaction mixture was extracted with dichloromethane (30 mL \times 3). The combined organic layer was dried over anhydrous MgSO₄, filtered, and concentrated under vacuum. The crude product was purified by silica gel column chromatography (PE/DCM = 1/1, v/v) followed by recrystallization from hexane.

3,6-Diethoxy-1,1,8,8-tetrafluoro-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4a:4',3'-c]quinoxaline (2a)

Orange solid, 1.65 g, 83% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.16 (dq, *J* = 6.8, 3.3 Hz, 2H), 7.36 (dt, *J* = 6.6, 3.6 Hz, 2H), 5.47 (s, 2H), 4.55 (q, *J* = 7.1 Hz, 4H), 1.47 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, DMSO) δ 169.97, 150.12, 127.69, 126.61, 120.15, 76.73, 65.93, 14.06.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -127.38 (d, *J* = 26.6 Hz).

¹¹**B NMR** (128 MHz, CDCl₃) δ 2.16.

HRMS (ESI) calcd for $C_{16}H_{17}B_2F_4N_2O_4^+$ [M+H]⁺ = 399.1305, found 399.1311.

Ethyl 2-(3-ethoxy-1,1-difluoro-1H- $1\lambda^4$,11 λ^4 -[1,3,2]oxazaborinino[3,4-*a*]quinoxalin-5-yl)acetate (2a-mono)

Green-yellow solid, 150.6 mg, 86% yield. (NEt₃ as the base at 25 °C in DCM for 0.5 mmol scale).

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.6 Hz, 1H), 7.87 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.64 (ddd, *J* = 8.7, 7.1, 1.6 Hz, 1H), 7.49 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H), 5.25 (s, 1H), 4.49 (t, *J* = 7.1 Hz, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 3.94 (s, 2H), 1.42 (t, *J* = 7.1 Hz, 3H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.58, 168.57, 149.51, 148.21, 137.48, 131.61, 130.79, 129.79, 126.56, 120.38, 74.55, 64.79, 61.75, 42.54, 14.35, 14.14.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.96 (dd, *J* = 33.3, 13.2 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.24 (t, J = 17.5 Hz).

HRMS (ESI) calcd for $C_{16}H_{18}BF_2N_2O_4^+$ [M+H]⁺ = 351.1322, found 351.1330.

11-Bromo-3,6-diethoxy-1,1,8,8-tetrafluoro-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (2b)

Brown solid, 1.83 g, 77% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 (q, J = 2.2 Hz, 1H), 7.98 (dt, J = 9.2, 2.6 Hz, 1H), 7.44 (dd, J = 9.2, 2.1 Hz, 1H), δ 5.46 (d, J = 5.9 Hz, 1H), 4.53 (q, J = 7.1 Hz, 2H, CH₂ in Et), 4.52 (q, J = 7.1 Hz, 2H, CH₂ in Et), 1.45 (t, J = 7.1, 3H, CH₃ in Et), 1.44 (t, J = 7.1, 3H, CH₃ in Et).

¹³C NMR (101 MHz, CDCl₃) δ 170.66, 170.49, 149.58, 149.25, 130.01, 129.19, 127.25, 123.52, 123.44, 123.36, 122.23, 122.15, 122.07, 120.47, 65.91, 65.79, 14.36.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.50, -127.57, -127.63.

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.01.

HRMS (ESI) calcd for $C_{16}H_{16}B_2BrF_4N_2O_4^+$ [M+H]⁺ = 477.0410, found 477.0427.

11,12-Dibromo-3,6-diethoxy-1,1,8,8-tetrafluoro-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (2c)

Brown solid, 1.78 g, 64% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (s, 2H), 5.50 (s, 2H), 4.55 (q, *J* = 7.1 Hz, 4H), 1.45 (t, *J* = 7.1 Hz, 6H).

*We attempted to use CDCl₃, d_6 -DMSO, and CD₃CN as deuterated solvents. However, due to the poor solubility, the ¹³C and ¹¹B NMR of **2c** were not obtained.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.77 – -127.95 (m).

HRMS (ESI) calcd for $C_{16}H_{15}B_2Br_2F_4N_2O_4^+$ [M+H]⁺ = 554.9515, found 554.9531.

II-3. General procedure for Suzuki-Miyaura coupling of bis-boron complexes³

An oven-dried Schlenk tube was charged with compound **2b** or **2c** (0.5 mmol), arylboronic acid (2.0 equiv.), Pd(OAc)₂ (0.05 equiv.), X-Phos (0.2 equiv.), and K₂CO₃ (3.0 equiv.). The reaction vessel was evacuated and backfilled with nitrogen, 1 mL of toluene was then added via syringe. The reaction mixture was stirring at 70°C for 4 hours. After cooling to room temperature, the crude product was purified by silica gel flash chromatography (PE /DCM = 2:1) to afford the target product.

3,6-diethoxy-1,1,8,8-tetrafluoro-11-phenyl-1,8-dihydro-1λ4,8λ4,9λ4,14λ4bis([**1,3,2**]**oxazaborinino**)[**3,4-a:4',3'-c**]**quinoxaline** (**3a**)

Orange solid, 203.8 mg, 86% yield. (PE/DCM = 2: 1 as eluent)

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (d, *J* = 2.5 Hz, 1H), 8.22 (dt, *J* = 9.0, 2.9 Hz, 1H), 7.71 – 7.68 (m, 2H), 7.63 (dd, *J* = 8.9, 2.0 Hz, 1H), 7.47 (td, *J* = 7.2, 6.3, 1.3 Hz, 2H), 7.42 – 7.37 (m, 1H), 5.47 (d, *J* = 2.1 Hz, 2H), 4.52 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 4.52 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 1.47 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ170.32, 170.20, 149.56, 149.07, 139.95, 139.62, 129.10, 128.10, 127.37, 126.06, 121.33, 121.26, 121.26, 121.19, 119.03, 76.42, 76.29, 65.57, 14.40.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -127.20 (d, J = 28.6 Hz), -127.50 (d, J = 28.8 Hz). ¹¹**B** NMR (128 MHz, CDCl₃) δ 2.18.

D NVIK (120 WI12, CDCl $_3$) 0 2.10.

HRMS (ESI) calcd for $C_{22}H_{21}B_2F_4N_2O_4^+$ [M+H]⁺ = 475.1618, found 475.1634.

3,6-diethoxy-1,1,8,8-tetrafluoro-11-(4-(trifluoromethyl)phenyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3b)

Green solid, 238.5 mg, 88% yield. (PE/DCM = 2:1 as eluent)

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (d, J = 2.5 Hz, 1H), 8.22 (dt, J = 9.0, 2.8 Hz, 1H), 7.74 (q, J = 8.4 Hz, 4H), 7.60 (dd, J = 8.9, 1.9 Hz, 1H), 5.50 (s, 2H), 4.56 (q, J = 7.1 Hz, 4H), 1.48 (t, J = 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.46, 149.65, 149.28, 143.12, 138.18, 128.71, 128.18, 127.64, 125.96 (q, J = 271.8 Hz), 125.88 (q, J = 32.3 Hz), 121.36 (q, J = 3.4 Hz), 119.25, 76.70, 65.73, 14.37. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.49, -127.35 (dd, J = 89.3, 29.4 Hz).

¹¹**B NMR** (128 MHz, CDCl₃) δ 2.12.

HRMS (ESI) calcd for $C_{23}H_{20}B_2F_7N_2O_4^+$ [M+H]⁺ = 543.1492, found 543.1512.

 $11-(4-(9H-carbazol-9-yl)phenyl)-3,6-diethoxy-1,1,8,8-tetrafluoro-1,8-dihydro-1\lambda^4,8\lambda^4,9\lambda^4,14\lambda^4-bis([1,3,2]oxazaborinino)[3,4-a:4',3'-c]quinoxaline (3c)$

Yellow solid, 204.5 mg, 64% yield. (PE/DCM = 1: 1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.48 – 8.46 (m, 1H), 8.27 (d, *J* = 8.9 Hz, 1H), 8.15 (d, *J* = 7.7 Hz, 2H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.69 (t, *J* = 8.2 Hz, 3H), 7.51 (d, *J* = 8.1 Hz, 2H), 7.47 – 7.41 (m, 2H), 7.30 (t, *J* = 7.0 Hz, 2H), 5.51 (d, *J* = 2.0 Hz, 2H), 4.55 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 4.54 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 1.49 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.65, 148.88, 148.39, 140.13, 138.17, 137.88, 136.90, 128.02, 127.12, 126.83, 125.39, 125.16, 122.84, 120.69, 119.67, 119.41, 109.26, 75.82, 75.72, 64.86, 13.62.
¹⁹F NMR (376 MHz, CDCl₃) δ -127.10, -127.43.

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.30.

HRMS (ESI) calcd for $C_{34}H_{28}B_2F_4N_3O_4^+$ [M+H]⁺ = 640.2197, found 640.2211.

3,6-diethoxy-1,1,8,8-tetrafluoro-11-(4-methoxyphenyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3d)

Red solid, 161.3 mg, 81% yield. (PE/DCM = 2:1 as eluent)

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 2.5 Hz, 1H), 8.11 (dt, J = 9.1, 2.9 Hz, 1H), 7.58 – 7.47 (m, 3H), 6.93 (d, J = 8.8 Hz, 2H), 5.40 (d, J = 4.5 Hz, 2H), 4.45 (q, J = 7.1 Hz, 2H, CH₂ in Et), 4.45 (q, J = 7.1 Hz, 2H, CH₂ in Et), 3.79 (s, 3H), 1.37 (t, J = 7.1, 3H, CH₃ in Et), 1.37 (t, J = 7.1, 3H, CH₃ in Et). ¹³**C NMR** (101 MHz, CDCl₃) δ 170.27, 170.08, 159.87, 149.54, 148.88, 139.65, 135.27, 132.10, 128.48, 127.24, 125.74, 121.23, 118.42, 114.57, 76.36, 76.10, 65.52, 55.54, 14.42. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.21 (d, J = 25.8 Hz), -127.54 (d, J = 24.0 Hz). ¹¹**B NMR** (128 MHz, CDCl₃) δ 2.19.

HRMS (ESI) calcd for $C_{23}H_{24}B_2F_4N_2O_5^+$ [M+H]⁺ = 505.1724, found 505.1746.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11-(4-(methylthio)phenyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3e)

Red solid, 184.6 mg, 71% yield. (PE/DCM = 2:1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.19 (d, *J* = 8.9 Hz, 1H), 7.59 (d, *J* = 8.3 Hz, 3H), 7.34 (d, *J* = 8.2 Hz, 2H), 5.47 (d, *J* = 2.6 Hz, 2H), 4.52 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 4.51 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 2.53 (s, 3H), 1.44 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.31, 170.17, 149.55, 148.98, 139.22, 138.84, 136.25, 128.77, 127.63, 127.03, 125.69, 121.30, 118.55, 76.44, 76.28, 65.58, 65.52, 15.89, 14.41, 14.38.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.18 (d, J = 22.4 Hz), -127.49 (d, J = 23.2 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.19.

HRMS (ESI) calcd for $C_{23}H_{24}B_2F_4N_2O_4S^+$ [M+H]⁺ = 521.1495, found 521.1496.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11,12-diphenyl-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (4a)

Orange solid, 209.0 mg, 76% yield. (PE/DCM = 2:1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (t, *J* = 2.8 Hz, 2H), 7.27 – 7.22 (m, 6H), 7.19 (dd, *J* = 6.8, 3.1 Hz, 4H), 5.48 (s, 2H), 4.51 (q, *J* = 7.1 Hz, 4H), 1.43 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.17, 149.16, 140.12, 139.71, 129.95, 128.05, 127.49, 127.07, 122.35 (t, *J* = 7.2 Hz), 76.32, 65.44, 14.25.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.40, -127.47.

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.17.

HRMS (ESI) calcd for $C_{28}H_{26}BF_2N_2O_4^+$ [M+H]⁺ = 551.1931, found 551.1933.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11,12-bis(4-(trifluoromethyl)phenyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (4b)

Green-yellow solid, 281.3 mg, 82% yield. (PE/DCM = 2: 1 as eluent)

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (s, 2H), 7.52 (d, *J* = 8.0 Hz, 4H), 7.28 (d, *J* = 8.1 Hz, 4H), 5.54 (s, 2H), 4.55 (d, *J* = 7.1 Hz, 4H), 1.46 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.64, 149.55, 143.41, 137.86, 132.17, 130.31, 129.82 (q, *J* = 32.2 Hz), 125.43 (q, *J* = 3.7 Hz), 124.18 (q, *J* = 272.2 Hz), 122.76, 122.69, 65.89, 14.36.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.51, -127.45 (d, J = 19.3 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.16.

HRMS (ESI) calcd for $C_{30}H_{23}B_2F_{10}N_2O_4^+$ [M+H]⁺ = 687.1679, found 687.1684.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11,12-bis(4-methoxyphenyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (4c)

Red solid, 225.8 mg, 74% yield. (PE/DCM = 2: 1 as eluent) ¹H NMR (400 MHz, CDCl₃) δ 8.07 (t, J = 2.5 Hz, 2H), 7.03 (d, J = 8.6 Hz, 4H), 6.70 (d, J = 8.6 Hz, 4H), 5.36 (s, 2H), 4.39 (q, J = 7.1 Hz, 4H), 3.69 (s, 6H), 1.31 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.11, 158.85, 149.05, 139.34, 132.75, 131.09, 127.37, 122.19, 113.66, 76.21, 65.44, 55.29, 14.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.33, -127.38. ¹¹B NMR (128 MHz, CDCl₃) δ 2.16. HRMS (ESI) calcd for C₃₀H₃₀B₂F₄N₂O₆⁺ [M+H]⁺ = 611.2142, found 611.2141.

II-4. General procedure for Sonogashira coupling of bis-boron complexes⁴

Under N₂ atmosphere, compound **2b** (0.5 mmol), phenylacetylene (1.2 equiv.), Pd(PPh₃)₂Cl₂ (0.05 equiv.), and CuI (0.1 equiv.) were dissolved in triethylamine (1 mL) and toluene (1 ml), the flask was vacuumed and back-filled with N₂ for several times. The solution was stirred at 70°C for 4 hours. The solvent then was removed under reduced pressure and the crude product was purified by column chromatography (PE:DCM =2:1 as the eluent) to afford the target product.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11-(phenylethynyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3f)

Orange solid, 169.3 mg, 68% yield. (PE/DCM = 1:1 as eluent)

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (d, *J* = 2.2 Hz, 1H), 8.09 (d, *J* = 8.9 Hz, 2H), 7.57 (dd, *J* = 6.5, 3.2 Hz, 3H), 7.47 (dd, *J* = 8.9, 1.7 Hz, 1H), 7.40 – 7.32 (m, 5H), 5.47 (d, *J* = 2.3 Hz, 2H), 4.53 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 4.52 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 1.44 (t, *J* = 7.1, 3H, CH₃ in Et), 1.44 (t, *J* = 7.1, 3H, CH₃ in Et).

¹³C NMR (101 MHz, CDCl₃) δ 170.44, 149.57, 149.16, 131.91, 130.12, 128.70, 128.50, 128.21, 128.09, 123.59 (t, J = 7.1 Hz), 122.98, 122.19, 120.93 (t, J = 6.9 Hz), 91.43, 88.76, 76.68, 65.73, 14.36. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.39 (d, J = 26.6 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.10.

HRMS (ESI) calcd for $C_{24}H_{21}B_2F_4N_2O_4^+$ [M+H]⁺ = 499.1618, found 499.1636.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11-((4-methoxyphenyl)ethynyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3g)

Orange solid, 186.9 mg, 73% yield. (PE/DCM = 1:1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 (q, *J* = 2.3 Hz, 1H), 8.11 (dt, *J* = 9.0, 2.8 Hz, 1H), 7.51 (d, *J* = 8.7 Hz, 2H), 7.46 (dd, *J* = 8.9, 1.7 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 5.47 (s, 2H), 4.53 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 4.52 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 1.44 (t, *J* = 7.1, 3H, CH₃ in Et), 1.44 (t, *J* = 7.1, 3H, CH₃ in Et).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.39, 170.31, 159.99, 149.54, 149.04, 133.37, 129.95, 128.22, 127.85, 123.29, 122.54, 120.85, 115.03, 114.16, 91.59, 87.59, 76.66, 76.60, 65.67, 55.42, 14.33.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.37 (q, *J* = 23.1, 20.4 Hz).

¹¹**B NMR** (128 MHz, CDCl₃) δ 2.09.

HRMS (ESI) calcd for $C_{25}H_{23}B_2F_4N_2O_5^+$ [M+H]⁺ = 529.1724, found 529.1727.

II-5. General procedure for Heck coupling of bis-boron complexes⁵

A Schlenk tube was charged with **2b** (0.5 mmol), styrene (1.5 equiv.), $Pd(OAc)_2$ (0.05 equiv.), $P(o-tolyl)_3$ (0.1 equiv.), toluene (1 mL) and triethylamine (1 mL). The flask was degassed and purged with nitrogen for three times. The mixture was heated at 100 °C for 4 hours. After cooling to room temperature, the crude product was purified by silica gel flash chromatography (PE/DCM = 1:1) to afford the target product.

$(E) - 3, 6-Diethoxy - 1, 1, 8, 8-tetrafluoro - 11-styryl - 1, 8-dihydro - 1\lambda^4, 8\lambda^4, 9\lambda^4, 14\lambda^4 - bis([1,3,2]oxazaborinino)[3, 4-a:4', 3'-c]quinoxaline (3h)$

Red solid, 185.0 mg, 74% yield. (PE/DCM = 1:1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 8.13 (d, *J* = 8.9 Hz, 1H), 7.54 (t, *J* = 8.2 Hz, 3H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 7.3 Hz, 1H), 7.17 – 7.12 (m, 2H), 5.43 (d, *J* = 4.7 Hz, 2H), 5.29 (s, 1H), 4.52 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 4.51 (q, *J* = 7.1 Hz, 2H, CH₂ in Et), 1.44 (t, *J* = 7.1, 3H, CH₃ in Et), 1.43 (t, *J* = 7.1, 3H, CH₃ in Et).

¹³C NMR (101 MHz, CDCl₃) δ 170.23, 170.04, 149.49, 148.70, 136.97, 136.39, 130.61, 128.84, 128.73, 128.15, 127.44, 126.91, 124.80, δ 121.17 (t, J = 8.1 Hz), 118.92, 76.37, 76.22, 65.54, 14.40. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.14 (d, J = 21.7 Hz), -127.46 (d, J = 22.3 Hz). ¹¹B NMR (128 MHz, CDCl₃) δ 2.13.

HRMS (ESI) calcd for $C_{24}H_{23}B_2F_4N_2O_4^+$ [M+H]⁺ = 501.1775, found 501,1789.

 $(E)-4-(2-(3,6-\text{Diethoxy-1},1,8,8-\text{tetrafluoro-1},8-\text{dihydro-1}\lambda^4,8\lambda^4,9\lambda^4,14\lambda^4-\text{bis}([1,3,2]\text{oxazaborinino})[3,4-a:4',3'-c]\text{quinoxalin-11-yl}\text{vinyl})-N,N-\text{dimethylaniline} (3i)$

Black-gray solid, 187.4 mg, 69% yield. (PE/DCM = 1:1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 2.4 Hz, 1H), 8.03 (dt, J = 9.1, 2.9 Hz, 1H), 7.48 (dd, J = 9.1, 1.8 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.05 (d, J = 16.2 Hz, 1H), 6.88 (d, J = 16.2 Hz, 1H), 6.65 (d, J = 8.4 Hz, 2H), 5.37 (d, J = 7.3 Hz, 2H), 4.45 (q, J = 7.1 Hz, 2H, CH₂ in Et), 4.43 (q, J = 7.1 Hz, 2H, CH₂ in Et), 1.38 (t, J = 7.1, 3H, CH₃ in Et), 1.36 (t, J = 7.1, 3H, CH₃ in Et).

¹³C NMR (101 MHz, CDCl₃) δ 170.13, 169.81, 150.06, 149.44, 148.35, 137.47, 130.86, 128.87, 128.15, 127.28, 126.01, 124.61, 123.33, 121.10, 118.13, 112.86, 76.20, 75.88, 65.45, 65.35, 40.87, 14.43.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.21 (d, J = 24.5 Hz), -127.59 (d, J = 21.7 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.16.

HRMS (ESI) calcd for $C_{26}H_{28}B_2F_4N_3O_4^+$ [M+H]⁺ = 544.2197, found 544.2191.

II-6. General procedure for Stille coupling of bis-boron complexes⁶

An oven-dried Schlenk tube was charged with 2b/2c (0.5 mmol) and Pd(PPh₃)₄ (0.05 equiv.) under nitrogen. After adding the dry toluene (3 mL) and tributyl(thiophen-2-yl)stannane (1.3 equiv.) via syringe, the mixture was kept stirring at 60°C for 2 hours. After cooling to room temperature, water was added, and the crude mixture was extracted with DCM (10 mL). The organic layers were combined, washed with brine and dried over magnesium sulfate. The solvents were removed under vacuum and the residue was chromatographed on a silica gel column (PE/DCM = 2:1) to afford the target product.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11-(thiophen-2-yl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3j)

Deep-red solid, 240.0 mg, 84% yield. (PE/DCM = 2: 1 as eluent)

¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (d, J = 2.3 Hz, 1H), 8.14 (dt, J = 9.0, 2.8 Hz, 1H), 7.59 (dd, J = 8.9, 2.0 Hz, 1H), 7.42 (dd, J = 3.6, 1.2 Hz, 1H), 7.33 (dd, J = 5.1, 1.1 Hz, 1H), 7.10 (dd, J = 5.1, 3.6 Hz, 1H), 5.46 (d, J = 4.9 Hz, 2H), 4.52 (q, J = 7.1 Hz, 2H, CH₂ in Et), 4.51 (q, J = 7.1 Hz, 2H, CH₂ in Et), 1.44 (t, J = 7.1, 3H, CH₃ in Et), 1.43 (t, J = 7.1, 3H, CH₃ in Et).

¹³C NMR (101 MHz, CDCl₃) δ 170.25, 170.02, 149.48, 148.72, 142.78, 133.20, 128.67, 128.30, 127.49, 125.96, 124.79, 124.39, 121.27, 121.19, 117.25, 76.44, 76.17, 65.41, 14.24.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.35 (d, J = 26.1 Hz), -127.53 (d, J = 26.2 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.20 (d, J = 17.6 Hz).

HRMS (ESI) calcd for $C_{20}H_{19}B_2F_4N_2O_4S^+$ [M+H]⁺ = 481.1182, found 481.1198.

3,6-Diethoxy-1,1,8,8-tetrafluoro-11,12-di(thiophen-2-yl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (4d)

Deep-red solid, 281.1 mg, 81% yield. (PE/DCM = 2: 1 as eluent)

¹**H** NMR (400 MHz, CDCl₃) δ 8.30 (s, 2H), 7.34 (dd, *J* = 4.6, 1.7 Hz, 2H), 7.04 – 6.99 (m, 4H), 5.52 (s, 2H), 4.55 (q, *J* = 7.1 Hz, 4H), 1.47 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) 170.32, 149.21, 141.25, 132.72, 127.97, 127.55, 127.03, 126.85, 122.50 (t, *J* = 7.4 Hz), 65.58, 14.24.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.59, -127.65.

¹¹**B NMR** (128 MHz, CDCl₃) δ 2.12.

HRMS (ESI) calcd for $C_{24}H_{22}B_2F_4N_2O_4S_2^+$ [M+H]⁺ = 563.1059, found 563.1055.

II-7. General procedure for Buchwald-Hartwig amination of bis-boron complexes⁷

An oven-dried Schlenk tube was charged with **2b** (0.5 mmol), 9*H*-carbozole (1.2 equiv.), Pd(OAc)₂ (0.05 equiv.), S-Phos (0.1 equiv.), and *t*-BuOK (3.0 equiv.). The reaction vessel was evacuated and backfilled again with nitrogen for three times before toluene (1 mL) was added via syringe. The reaction mixture was kept stirring at 150°C for 2 hours. After cooling to room temperature, the crude product was purified by silica gel flash chromatography (PE/DCM = 1:1 as eluent) to afford **3k** (281.6 mg, 62% yield) as a purple solid.

11-(9*H*-Carbazol-9-yl)-3,6-diethoxy-1,1,8,8-tetrafluoro-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3k)

¹**H NMR** (400 MHz, CDCl₃) δ 8.34 (d, J = 2.5 Hz, 1H), 8.27 (dt, J = 9.2, 2.6 Hz, 1H), 8.06 (d, J = 7.7 Hz, 2H), 7.54 (dd, J = 9.2, 2.2 Hz, 1H), 7.50 (d, J = 8.3 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.23 (t, J = 7.4 Hz, 2H), 5.44 (d, J = 4.8 Hz, 2H), 4.47 (q, J = 7.1 Hz, 2H, CH₂ in Et), 4.43 (q, J = 7.1 Hz, 2H, CH₂ in Et), 1.38 (t, J = 7.1, 3H, CH₃ in Et), 1.36 (t, J = 7.1, 3H, CH₃ in Et).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.62, 170.39, 149.63, 149.17, 140.39, 136.33, 129.33, 126.84, 126.41, 124.94, 123.90, 122.25, 120.63, 120.47, 118.47, 110.00, 76.56, 65.83, 65.75, 14.40, 14.36.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -127.46 (dd, *J* = 54.4, 29.1 Hz).

¹¹**B** NMR (128 MHz, CDCl₃) δ 2.18.

HRMS (ESI) calcd for $C_{28}H_{24}B_2F_4N_3O_4^+$ [M+H]⁺ = 564.1884, found 564.1871.

II-8. Preparation of ROS and RNS

The stock solution of ClO⁻ (2.0 mM) was prepared by diluting a NaClO aqueous solution (1.4 mol/L), and the concentration was determined from absorption at $\lambda = 292$ nm ($\varepsilon = 350$ M⁻¹ cm⁻¹). Hydrogen peroxide (H₂O₂) was prepared by diluting a 30% H₂O₂ solution, and the final concentration of H₂O₂ was 100 µM. *tert*-Butyl hydroperoxide (TBHP, 100 µM) was prepared in degassed deionized water. Hydroxyl radical (•OH) was generated *in situ* by a Fenton reaction: FeCl₂ (100 µM) was added to 10 equiv. of H₂O₂, and the concentration of •OH was estimated from the concentration of Fe (II). Nitric oxide (NO) was generated from SNP (Sodium Nitroferricyanide (III) Dihydrate), which was added into degassed deionized water under N₂ and stirred for 30 min. Singlet oxygen (¹O₂) was prepared by adding NaMoO₄ to a solution of H₂O₂ in PBS solution (pH 7.4, 10.0 mM).

II-9. Preparation of 3e-SO from 3e and NaClO

3,6-Diethoxy-1,1,8,8-tetrafluoro-11-(4-(methylsulfinyl)phenyl)-1,8-dihydro- $1\lambda^4$,8 λ^4 ,9 λ^4 ,14 λ^4 -bis([1,3,2]oxazaborinino)[3,4-*a*:4',3'-*c*]quinoxaline (3e-SO)

¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.80 – 7.62 (m 4H), 7.52 (d, J = 8.4 Hz, 1H), 5.43 (s, 2H), 4.46 (q, J = 7.2 Hz, 4H), 2.70 (s, 3H), 1.38 (t, J = 6.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.40, 149.63, 149.23, 145.38, 142.52, 138.27, 128.70, 128.26, 128.13, 125.86, 124.30, 121.47, 119.25, 76.69, 65.71, 44.23, 14.37. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.22 (d, J = 25.6 Hz), -127.47 (d, J = 24.4 Hz). ¹¹B NMR (128 MHz, CDCl₃) δ 2.20. HRMS (ESI) calcd for C₂₃H₂₄B₂F₄N₂O₅S⁺ [M+H]⁺ = 537.1444, found 537.1449.

$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	OEt 2a-mono
Entry Solvent Base Temp.	Result
1 DCM NEt ₃ 25°C 2-mo	ono, 86% yield
$2 \qquad \text{Toluene} \qquad \text{NEt}_3 \qquad 80^{\circ}\text{C} \qquad 2,$, 77% yield
3 Toluene HMDS 80°C 2 ,	, 83% yield
4 Toluene HMDS 110°C 2 ,	, 78% yield

Table S1. Optimization of boron coordinated reactions.^a

^{*a*} Reaction conditions: Base (3 equiv.), BF₃·Et₂O (5 equiv.) in solvent for 4 hours.

Fig. S1 TGA curves and derivative weight of **2a** (left) and photostability of **2a** under continuous irradiation with a 500W Xe lamp over 20 minutes (right).

Fig. S2 ¹⁹F NMR of **2a** in CDCl₃ for different times compared with **2a-mono**. Notice: **2a-mono** is unstable in solution and has deteriorated in CDCl₃ for 12 hours.

Table S2 Optimization of Suzuki-Coupling reactions.^a

Entry	Pd catalyst/ligand	Solvent	Temp.	Yield (%)
1	Pd(PPh ₃)Cl ₂	Dioxane:H ₂ O	100°C	3aa, 75%
2	Pd(PPh ₃)Cl ₂	Dioxane:H ₂ O	70°C	3aa , 82%
3	Pd(PPh ₃)Cl ₂	THF	70°C	3ab+3ac , 45%
4	Pd(PPh ₃)Cl ₂	THF	50°C	3ab+3ac , 73%
5	Pd(OAc) ₂ /XPhos	Toluene	r.t.	3a , 66%
6	Pd(OAc) ₂ /XPhos	Toluene	70°C	3a 73% & (3ab+3ac) 18%
7	Pd(OAc) ₂ /XPhos	Toluene	70°C	3a , 86%

^{*a*} **2b** (0.3 mmol), phenylboronic acid (2.0 equiv.), Pd catalyst (5 mol%), ligand (10 mol%), K_2CO_3 (3.0 equiv.), solvent (1 mL), 10 h.

III. Crystallographic and structural refinement data

Fig. S3 Crystal-packing pattern of **3b** between the adjacent interlayered crystals from side view. Interlayer distance is 3.687 Å and the corresponding slip angel of 44.84° for coplanar inclined arrangements of its transition dipole. H, light gray; C, gray; N, blue; O, red; F, green; B, yellow.

Fig. S4 Crystal-packing pattern of **3c** between the adjacent interlayered crystals from side view. Interlayer distance is 4.082 Å and the corresponding slip angel of 70.43° for coplanar inclined arrangements of its transition dipole. H, light gray; C, gray; N, blue; O, red; F, green; B, yellow.

Fig. S5 Crystal-packing pattern of **3k** between the adjacent interlayered crystals from side view. Interlayer distance is 3.664 Å and the corresponding slip angel of 53.95° for coplanar inclined arrangements of its transition dipole. H, light gray; C, gray; N, blue; O, red; F, green; B, yellow.

Identification code	3b		
CCDC No.	2329222		
Empirical formula	$C_{23}H_{19}B_2F_7N_2O_4$		
Formula weight	542.02		
Temperature/K	118.25(10)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	8.7996(5)		
b/Å	27.3747(14)		
c/Å	9.3692(5)		
α/°	90.00		
β/°	92.549(5)		
γ/°	90.00		
Volume/Å ³	2254.7(2)		
Z	4		
$\rho_{calc}g/cm^3$	1.597		
μ/mm ⁻¹	0.145		
F(000)	1104.0		
Crystal size/mm ³	0.35 ×0.26 ×0.14		
Radiation	Mo Kα (λ = 0.71073)		
20 range for data collection/°	6.24 to 52		
Index ranges	$-10 \le h \le 10, -33 \le k \le 30, -11 \le 1 \le 8$		
Reflections collected	9269		
Independent reflections	4304 [$R_{int} = 0.0409, R_{sigma} = 0.0659$]		
Data/restraints/parameters	4304/12/345		
Goodness-of-fit on F ²	1.035		
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0632, wR_2 = 0.1332$		
Final R indexes [all data]	$R_1 = 0.0876, wR_2 = 0.1483$		
Largest diff. peak/hole / e Å ⁻³	0.99/-0.28		

 Table S3 Crystal data and structure refinements for 3b obtained from crystallography.

Compound	3c
CCDC No.	2329220
Empirical formula	$C_{34}H_{27}B_2F_4N_3O_4$
Formula weight	724.185
Temperature/K	115(4)
Crystal system	triclinic
Space group	P-1
a/Å	11.4676(7)
b/Å	12.1893(8)
c/Å	13.0225(8)
α/°	102.544(5)
β/°	105.810(5)
γ/°	104.715(5)
Volume/Å ³	1611.8(2)
Z	2
$\rho_{calc}g/cm^3$	1.492
μ/mm ⁻¹	0.271
F(000)	745.0
Crystal size/mm ³	0.4 ×0.36 ×0.21
Radiation	Mo K α ($\lambda = 0.71073$)
20 range for data collection/°	6.16 to 52
Index ranges	$-15 \le h \le 14, -15 \le k \le 15, -17 \le l \le 16$
Reflections collected	13055
Independent reflections	6201 [$R_{int} = 0.0351$, $R_{sigma} = 0.0601$]
Data/restraints/parameters	6201/0/453
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2σ (I)]	$R_1 = 0.0584, wR_2 = 0.1255$
Final R indexes [all data]	$R_1 = 0.0778, wR_2 = 0.1412$
Largest diff. peak/hole / e Å ⁻³	1.38/-1.27

Table S4 Crystal data and structure refinements for 3c obtained from crystallography.

Identification code	3k			
CCDC No.	2329221			
Empirical formula	$C_{28}H_{23}B_2F_4N_3O_4$			
Formula weight	563.11			
Temperature/K	118.15(10)			
Crystal system	monoclinic			
Space group	P21/c			
a/Å	11.4139(5)			
b/Å	11.676(2)			
c/Å	19.1275(8)			
α/°	90.00			
β/°	94.138(4)			
γ/°	90.00			
Volume/Å ³	2542.5(5)			
Z	4			
$\rho_{calc}g/cm^3$	1.471			
μ/mm^{-1}	0.117			
F(000)	1160.0			
Crystal size/mm ³	0.35 ×0.33 ×0.33			
Radiation	Μο Κα (λ = 0.71073)			
2Θ range for data collection/°	6.4 to 52			
Index ranges	$-12 \le h \le 13, -13 \le k \le 11, -17 \le l \le 23$			
Reflections collected	10584			
Independent reflections	4850 [$R_{int} = 0.0370$, $R_{sigma} = 0.0607$]			
Data/restraints/parameters	4850/0/374			
Goodness-of-fit on F ²	1.030			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0484, wR_2 = 0.0945$			
Final R indexes [all data]	$R_1 = 0.0728, wR_2 = 0.1087$			
Largest diff. peak/hole / e Å ⁻³	0.20/-0.26			

Table S5 Crystal data and structure refinements for **3k** obtained from crystallography.

Compounds	3b	3с	3k
O1-B1 distance[Å]	1.476(4)	1.465(4)	1.483(3)
N1-B1 distance[Å]	1.583(4)	1.580(3)	1.580(3)
O3-B2 distance[Å]	1.488(4)	1.483(3)	1.469(3)
N2-B2 distance[Å]	1.576(4)	1.585(3)	1.587(3)
	C14-C15	C1-C2	C19-C20
	1.385(4)	1.374(4)	1.379(3)
	C15-C16	C2-C3	C20-C21
$C(\mathbf{X})$ $C(\mathbf{X})$ distance $[\lambda]$	1.381(4)	1.398(4)	1.380(3)
C(X)- $C(T)$ distance[A]	C17-C18	C4-C5	C22-C23
	1.400(4)	1.387(4)	1.390(3)
	C18-C19	C5-C6	C23-C24
	1.372(5)	1.390(3)	1.378(3)
	O1-C14	O1-C1	O1-C19
$C(\mathbf{X}) = O(\mathbf{X})$ distance $\begin{bmatrix} \mathbf{A} \end{bmatrix}$	1.287(4)	1.294(3)	1.289(2)
C(A)-O(Y) distance[A]	O3-C19	O2-C6	O3-C24
	1.290(4)	1.285(3)	1.290(3)
slip angles [deg]	44.84	70.40	53.95

Table S6 Selected bond lengths [Å] and dihedral angles [deg] of 3b, 3c and 3k obtained from crystallography.

IV. Photophysical properties of quinoxaline-based bis-boron complexes

Fig. S6 Concentration-dependent UV-vis absorption of 3e in CH₂Cl₂ at room temperature.

Fig. S7 Normalized absorption and emission spectra of 2a & 2a-mono in DCM.

Fig. S8 Normalized absorption and emission spectra of 3a-3b & 3d-3e in DCM.

Fig. S9 Normalized absorption and emission spectra of 3f-3g in DCM.

Fig. S10 Normalized absorption and emission spectra of 3h in DCM and 3i in toluene.

Fig. S11 Normalized absorption and emission spectra of 3j & 4d in DCM.

Fig. S12 Normalized absorption and emission spectra of 4a-4d in DCM.

Fig. S13 Normalized emission spectra of 3a-3e (a) and 4a-4d (b) in powder state.

Table S7. Photophysical properties of selected compounds **3a-3e** and **4a-4d** in dichloromethane and solid powder.

	Dich	Powder				
Entry	$\lambda_{abs} {}^{max}/nm (\log \varepsilon_{max})^{b}$	$\lambda_{em}^{max} / nm^{b}$	Stokes shift ^c /nm	$arPhi^{d,e}_{ m f}$ /%	λ_{em} (nm)	${{arPsi}_{\mathrm{f}}}^{e}\left(\% ight)$
3a	465 (4.63), 496 (4.61)	521, 552	56	61	570, 599	26
3 b	460 (4.54), 493 (4.51)	510, 542	50	48	553, 593	32
3 c	473 (4.32), 506 (4.28)	561	88	79	592	41
3d	475 (4.52), 506 (4.48)	578	103	88	596	36
3e	472 (4.59), 503 (4.53)	600	128	81	613	33
4 a	470 (4.21), 504 (4.49)	528, 569	58	52	576, 614	37
4 b	462 (4.43), 495 (4.41)	512, 547	50	48	581	40
4 c	483 (4.44), 515 (4.42)	590	107	91	623	38
4d	480 (4.40), 509 (4.35)	586	106	79	624	43

^{*a*} The spectra were recorded in CH_2Cl_2 ($c = 1.0 \times 10^{-5}$ M) at room temperature. ^{*b*} Data correspond to the strongest absorption/emission peaks. ^{*c*} Energy gap between the absorption and emission maxima in CH_2Cl_2 solution. ^{*d*} In toluene. ^{*e*} Absolute quantum yield determined by a calibrated integrating sphere system.

Fig. S14 (a) Mechanism of **3i** as a "turn-on" pH sensor. (b) Emission spectra of initial, TFA and NEt₃ additive of **3i**. (c) Reversible switching of the emission of **3i** by the TFA-NEt₃ additive cycle. Insets: photos of **3i** in DCM irradiated at 365 nm.

Fig. S15 Normalized absorption and emission spectra of **3e** (left) and **3e-SO** (right) in DCM. Insets: photos of **3e** and **3e-SO** in DCM irradiated at 365 nm.

Fig. S16 (a) Emission intensity of **3e** in different solvents and (b) Emission of **3e** compared with ClO⁻ additive in EtOH. (Concertation: 1×10^{-5} mol/L)

V. Electrochemical studies

The redox potentials of **2a** and **3a-3c** were measured by cyclic voltammetry in dichloromethane containing tetrabutylammonium hexafluorophosphate $[(n-Bu)_4N][PF_6]$ (0.1 M) as a supporting electrolyte, purged with argon prior to conduct the experiments. All compounds exhibited one or two reversible oxidations and reductions. The redox potentials as well as the experimental HOMO and LUMO energy levels determined by the first oxidation and reduction potentials.

Fig. S17 Cyclic voltammograms of **2a** and **3a-3c** in CH₂Cl₂ (1 mM), measured with $[(n-Bu)_4N][PF_6]$ as a supporting electrolyte at a scan rate of 100 mV·s⁻¹.

Compounds	Eox oneset (V)	$E_{ m red \ oneset} \left({ m V} ight)$	Eномо (eV)	ELUMO (eV)
2a	1.48	-0.81	-5.82	-3.45
3 a	1.40	-0.80	-5.74	-3.54
3b	1.46	-0.82	-5.80	-3.52
3c	0.85	-0.84	-5.19	-3.49

Table S8 Electrochemical data of complexes 2a and 3a-c.^a

^a Potentials are given against ferrocene/ferrocenium (Fc/Fc⁺).

VI. DFT calculations

All calculations were performed using the B3LYP-D3(BJ)/6-31G(d) level of theory with the Polarizable Continuum Model (PCM) solvent model for dichloromethane, utilizing the Gaussian 09 software package. Ground state geometries were optimized using the Berny Optimization Algorithm, and Time-Dependent Density Functional Theory (TD-DFT) calculations were carried out based on the optimized ground state geometries to obtain excited state properties. The corresponding command lines are "opt=calcfc b3lyp/6-31G(d) em=gd3bj scrf=(solvent=Dichloromethane)" for ground state optimization, and "td=(50-50, nstates=3) b3lyp/6-31G(d) em=gd3bj scrf=(solvent=Dichloromethane)" for TDDFT calculations.

Table S9 Frontier orbital energy calculated by B3LYP-D3(BJ)/6-31G(d) based on optimized ground state geometries.

Compoundo		Energ	y (eV)	
Compounds	HOMO-1	HOMO	LUMO	LUMO+1
2a	-6.38499	-5.8669	-2.72107	-1.19782
3 a	-6.34581	-5.8171	-2.81114	-1.394
3 b	-6.53683	-5.99071	-2.93005	-1.60244
3c	-5.90608	-5.42881	-2.83182	-1.45768

Table S10 Selected excited state energies (eV) and oscillator strengths calculated by TD-B3LYP-D3(BJ)/6-31G(d).

Compounds	Electronic Transitions ^{<i>a</i>}	Energy (eV)	Wavelength (nm)	f ^b	CI ^c	Composition
	<u>60 . 61</u>	2.8184	439.9	0.3482	0.10763	HOMO-1→LUMO+1
	50→51				0.70069	HOMO→LUMO
2a	S0→S2	3.1624	392.0	0.0773	0.70373	HOMO-1→LUMO
	S0→S3	3.9014	317.8	0.0000	0.56067	HOMO-2→LUMO
					0.42758	HOMO→LUMO+1
	S0→S1 2.64	2 (40 1	468.0	0.4905	0.10254	HOMO-1→LUMO
		2.0491			0.69504	HOMO→LUMO
30	S0→S2	3.0456	407.1	0.0580	0.70088	HOMO-1→LUMO
58	S0→S3 3.6736		337.5		0.11995	HOMO-4→LUMO
		3.6736		0.0264	0.67618	HOMO-3→LUMO
					0.11544	HOMO-2→LUMO+1
	S0→S1	2.6999	459.2	0.5313	0.69526	HOMO→LUMO
--	-------	--------	-------	--------	---------	-------------
	S0→S2	3.1035	399.5	0.0507	0.70178	HOMO-1→LUMO
3b					0.20009	HOMO-4→LUMO
	S0→S3	3.757	330.0	0.0065	0.61005	HOMO-2→LUMO
					0.26927	HOMO→LUMO+1
	S0→S1	2.2962	539.9	0.1944	0.70549	HOMO→LUMO
3c	S0→S2	2.7634	448.7	0.4212	0.70106	HOMO-2→LUMO
	S0→S3	2.8255	438.8	0.0000	0.70682	HOMO-1→LUMO
^a Only presented with selected low-lying states. ^b Oscillator strength. ^c Configuration interaction coefficients,						
shown in absolute values.						

Optimized geometries in Angstrom:

2a

SCF energy = -1479.3180001 Hartree

С	-0.69785500	-4.51462500	0.05513900
С	-1.39251100	-3.31833200	0.10294800
С	-0.70476000	-2.09155000	0.04317600
С	0.70478000	-2.09154300	-0.04335300
С	1.39254200	-3.31831600	-0.10319600
С	0.69789900	-4.51461600	-0.05541000
Н	-1.24485000	-5.45069700	0.10159500
Н	-2.46754000	-3.32964900	0.19123700
Н	2.46756300	-3.32961100	-0.19157300
Н	1.24490000	-5.45068200	-0.10191900
С	0.73936500	0.30011700	-0.00311800
С	-0.73936300	0.30010900	0.00307400
Ν	-1.39958400	-0.87382200	0.05152300
Ν	1.39959200	-0.87380900	-0.05160900
В	-2.98739800	-0.92201900	0.05410200
В	2.98740200	-0.92199700	-0.05390100
С	1.43160500	1.51525300	0.04359200
Н	0.92888300	2.46306900	0.11414000
С	-1.43161100	1.51524700	-0.04356900
Н	-0.92889400	2.46306900	-0.11408100

С	-2.82023300	1.53099600	-0.01341200
С	2.82022900	1.53101700	0.01340400
0	3.54357100	0.46277800	-0.05751500
0	-3.54357000	0.46274500	0.05743300
F	3.43194000	-1.54804200	-1.20148300
F	3.42721800	-1.55184000	1.09241300
F	-3.42744000	-1.55210000	-1.09199000
F	-3.43171500	-1.54774700	1.20192600
0	3.43924900	2.69488000	0.05262100
0	-3.43927100	2.69485900	-0.05265000
С	4.89829700	2.71019200	0.02922600
Н	5.26146300	2.12779500	0.87955300
Н	5.23167700	2.22735400	-0.89268500
С	5.32220400	4.16092000	0.10363000
Н	4.96488800	4.62524900	1.02759700
Н	6.41508200	4.21787800	0.08728400
Н	4.93310700	4.72584500	-0.74871000
С	-4.89832000	2.71016300	-0.02923100
Н	-5.23167100	2.22749300	0.89277800
Н	-5.26151000	2.12761000	-0.87944000
С	-5.32224200	4.16087300	-0.10388900
Н	-6.41511900	4.21782700	-0.08747600
Н	-4.93308800	4.72596900	0.74831200
Н	-4.96499500	4.62502300	-1.02797400

3a

SCF energy = -1710.4013158 Hartree

С	5.64628100	-1.59109100	-0.59623500
С	7.01357100	-1.32923900	-0.66281100
С	7.52435200	-0.12816100	-0.16632000
С	6.65622400	0.80920000	0.39792300
С	5.28923100	0.54781100	0.46542000
0	-0.43784500	3.40418400	-0.07188800
С	-1.68719100	3.08387400	0.00502400

С	-2.14063600	1.77079500	0.04410900
0	-2.81910800	-3.25698600	0.16424300
С	-3.58629500	-2.22837200	-0.01012000
С	-1.22913000	0.71053300	-0.00041700
С	-3.10151000	-0.93110000	-0.08742000
С	-1.72234600	-0.68215100	0.02172400
С	4.76261900	-0.65621100	-0.03220000
Ν	-0.84307300	-1.68979100	0.14632100
Ν	0.09918800	0.93795100	-0.05370600
С	2.39069800	0.10708100	-0.08926600
С	1.00966000	-0.12481000	-0.00217100
С	0.53399800	-1.44394200	0.15731000
С	1.46423400	-2.49140100	0.29343600
С	2.82047100	-2.23673000	0.24060400
С	3.30973900	-0.93050700	0.03682500
В	-1.33839300	-3.20535000	0.17886700
F	-0.90746300	-3.80080000	1.34885300
F	-0.86096800	-3.85129300	-0.94396800
В	0.68101800	2.41680000	-0.05387200
F	1.43110200	2.62518800	-1.19485300
F	1.41259500	2.61791300	1.09830200
0	-2.57393700	4.05886600	0.04101800
С	-3.32043400	6.32634600	0.06368400
С	-2.09665800	5.43807500	0.00852200
0	-4.86131000	-2.56910200	-0.08865300
С	-7.21356200	-2.23754400	-0.30389700
С	-5.87081800	-1.53997800	-0.25964300
Н	5.25699900	-2.51698900	-1.00866500
Н	7.67960600	-2.06127900	-1.11045500
Н	8.58993000	0.07538400	-0.21783900
Н	7.04479700	1.74265700	0.79480900
Н	4.62495100	1.27092200	0.92896000
Н	-3.20101500	1.61578400	0.13536000
Н	-3.78717600	-0.12153700	-0.25153700

Н	2.74705900	1.10499100	-0.28831300
Н	1.11839800	-3.49984100	0.45915900
Н	3.51528100	-3.05797700	0.37871500
Н	-3.00538700	7.37425300	0.04077500
Н	-3.97523700	6.14266700	-0.79332400
Н	-3.88656900	6.15489700	0.98405800
Н	-1.43332500	5.59147000	0.86324400
Н	-1.52204900	5.58029400	-0.90993500
Н	-8.00434300	-1.49209700	-0.43265000
Н	-7.25813500	-2.94008000	-1.14109900
Н	-7.39781300	-2.78335600	0.62594800
Н	-5.80285800	-0.84324100	0.58175900
Н	-5.66382900	-1.00092400	-1.18950500

3b

SCF energy = -2047.442935 Hartree

С	-4.28089700	0.57513500	-0.55240500
С	-5.64645000	0.83300500	-0.50453600
С	-6.51674200	-0.12067800	0.02905000
С	-6.01449000	-1.33016600	0.51513100
С	-4.64756500	-1.58246400	0.46698900
0	1.41518000	3.44730800	0.09783500
С	2.66995300	3.14358300	0.00605600
С	3.12689000	1.83359500	-0.04767800
0	3.83676400	-3.19077800	-0.15138400
С	4.59288800	-2.16011500	0.05134000
С	2.21701900	0.76444400	-0.00438100
С	4.09776600	-0.86512300	0.12448700
С	2.72128900	-0.62414300	-0.01859000
С	-3.75813100	-0.63452000	-0.06488600
Ν	1.85040800	-1.63730900	-0.16656900
Ν	0.89198400	0.98176000	0.04090700
С	-1.39452200	0.14010100	0.03950900
С	-0.01147000	-0.08496000	-0.02949000

С	0.47393300	-1.39944500	-0.19907800
С	-0.44815200	-2.45018300	-0.36540300
С	-1.80599100	-2.20291600	-0.32892900
С	-2.30358800	-0.90149300	-0.11462900
В	2.35580300	-3.15085100	-0.19115300
F	1.95004800	-3.74783300	-1.36852200
F	1.86265200	-3.79804400	0.92311100
В	0.30625300	2.46588100	0.03929300
F	-0.40112200	2.66027800	-1.12995300
F	-0.47804700	2.65124900	1.16198500
0	3.44043600	4.21645200	-0.01623200
С	5.47823000	5.45657500	-0.06281800
С	4.88303000	4.06512800	-0.08700900
0	5.86682800	-2.49261600	0.16053400
С	8.21128500	-2.14942200	0.43688800
С	6.86628600	-1.45889300	0.36372800
С	-7.98279200	0.17824700	0.13618200
F	-8.29162100	0.76970300	1.31766400
F	-8.73788300	-0.94151200	0.05708300
F	-8.40383100	1.01777100	-0.83714000
Н	-3.61513600	1.30847700	-0.99542800
Н	-6.03654000	1.76645400	-0.89509700
Н	-6.68885600	-2.07049000	0.93152600
Н	-4.26558900	-2.51568600	0.86755400
Н	4.17862900	1.64789600	-0.15687000
Н	4.77360300	-0.05385500	0.31908500
Н	-1.75693400	1.13422000	0.24620900
Н	-0.09411100	-3.45400000	-0.54144000
Н	-2.49412800	-3.02556100	-0.48972200
Н	6.56881900	5.38365500	-0.11655300
Н	5.12650800	6.04385600	-0.91590300
Н	5.20932500	5.97770300	0.86048700
Н	5.21173300	3.46757500	0.76922400
Н	5.13094800	3.53487800	-1.01197900

Н	8.99414800	-1.40053900	0.59155800
Н	8.23839400	-2.85793200	1.26972800
Н	8.42233500	-2.68698400	-0.49200800
Н	6.81486900	-0.75715500	-0.47465400
Н	6.63287800	-0.92800200	1.29196500

c

SCF energy = -2226.7342516 Hartree

F	-1.22025000	2.62824900	0.88979300
F	-3.74404800	-3.76824700	1.27196200
F	-1.28353600	2.40569100	-1.39132700
F	-3.83073000	-3.90409700	-1.01577200
0	-5.19566400	4.09052200	-0.37818600
0	-3.08166800	3.36788000	-0.27280900
0	-5.70074100	-3.19630100	0.15017400
0	-7.71432000	-2.41509900	0.35371900
Ν	6.14194700	-0.17290800	0.05042400
Ν	-2.63428700	0.89273200	-0.06431500
Ν	-3.67124400	-1.70589900	0.00500100
С	1.96630200	-0.86168100	-0.01680500
С	-2.28707200	-1.51314900	-0.05030600
С	-3.97079900	0.71124800	-0.06179300
С	-0.37360500	-0.01380100	0.00435100
Н	0.02084000	0.98529700	0.09657100
С	-1.39618000	-2.60234100	-0.09362100
Н	-1.77922000	-3.60946400	-0.14638600
С	-6.42906800	-2.12912900	0.23651200
С	-5.89763600	-0.84814400	0.19363700
Н	-6.55345600	-0.00354800	0.28745200
С	3.89411600	0.49428000	-0.62618700
Н	4.31208600	1.35431700	-1.13815000
С	-4.34339800	3.09012100	-0.27667700
С	8.16970400	0.85736500	0.34048900
С	4.20794500	-1.53544600	0.65139800

Н	4.86379300	-2.21911900	1.17960800
С	-1.76308900	-0.20291800	-0.03268400
С	-4.66820300	5.44712600	-0.49205000
Н	-4.06354600	5.65436200	0.39423800
Н	-4.02343200	5.49098300	-1.37317900
С	2.52208100	0.27041100	-0.63660300
Н	1.87578100	0.96476700	-1.16418400
С	2.83614700	-1.76247400	0.61933700
Н	2.43303200	-2.62996200	1.13209600
С	-4.51255100	-0.65948000	0.04921000
С	7.13174500	-1.09130800	-0.31850300
С	-4.84453100	1.79752400	-0.17550500
Н	-5.91251900	1.67767400	-0.21643200
С	4.74608500	-0.40564200	0.02478600
С	0.50596600	-1.09182000	-0.03209900
С	6.19508500	2.19526400	0.93768200
Н	5.12117200	2.30294700	1.04105700
С	-0.03105700	-2.39365200	-0.09097200
Н	0.63179100	-3.24969800	-0.15565000
С	-8.68651800	-1.34002100	0.43715000
Н	-8.45885800	-0.73351300	1.31936000
Н	-8.59578800	-0.71835700	-0.45912200
С	9.01435800	1.91286400	0.70144000
Н	10.09237500	1.80525800	0.61967900
С	9.43467400	-2.50503000	-0.95527500
Н	10.32348900	-3.07634700	-1.20560200
С	8.16551300	-3.08499000	-1.12863400
Н	8.08868200	-4.09684900	-1.51584000
С	7.05843400	3.23096700	1.29108600
Н	6.64075400	4.15964200	1.66896700
С	-5.85961500	6.37290700	-0.60450400
Н	-6.45627100	6.13629000	-1.49052500
Н	-6.49764600	6.29864400	0.28118800
Н	-5.50569600	7.40498300	-0.69071500

С	8.40438900	-0.48450800	-0.15236300
В	-4.21968200	-3.19974500	0.10717000
С	-10.05317100	-1.98323800	0.53729900
Н	-10.25797200	-2.59774600	-0.34412500
Н	-10.12210400	-2.61132900	1.43014800
Н	-10.81648200	-1.20166500	0.60177000
С	8.45312800	3.09743400	1.17164100
Н	9.09680500	3.92523700	1.45356600
В	-2.00007500	2.34221500	-0.21409600
С	6.99850600	-2.38912600	-0.81729100
Н	6.02316500	-2.83993200	-0.96245200
С	6.76345100	1.01532900	0.45237200
С	9.56035600	-1.20502300	-0.47203000
Н	10.54036800	-0.75260300	-0.34849100

VI. Reference

- (1) Zykova, S. S.; Odegova, T. F.; Karmanova, O. G.; Makhmudov, R. R. Synthesis and Biological Activity of 2,3-Bis-(2-Oxoylidene)-1,2,3,4-Tetrahydroquinoxalines. *Pharm. Chem. J.* **2015**, *48*, 640–645.
- (2) Yu, C.; Jiao, L.; Zhang, P.; Feng, Z.; Cheng, C.; Wei, Y.; Mu, X.; Hao, E. Highly Fluorescent BF₂ Complexes of Hydrazine–Schiff Base Linked Bispyrrole. *Org. Lett.* **2014**, *16*, 3048–3051.
- (3) Miao, W.; Feng, Y.; Wu, Q.; Sheng, W.; Li, M.; Liu, Q.; Hao, E.; Jiao, L. Phenanthro[b]-Fused BODIPYs through Tandem Suzuki and Oxidative Aromatic Couplings: Synthesis and Photophysical Properties. J. Org. Chem. 2019, 84, 9693–9704.
- (4) Li, X.; Ji, G.; Son, Y.-A. Tunable Emission of Hydrazine-Containing Bipyrrole Fluorine–Boron Complexes by Linear Extension. *Dyes Pigments* **2016**, *124*, 232–240.
- (5) Kölmel, D. K.; Hörner, A.; Casta ñeda, J. A.; Ferencz, J. A. P.; Bihlmeier, A.; Nieger, M.; Bräse, S.; Padilha, L. A. Linear and Nonlinear Optical Spectroscopy of Fluoroalkylated BODIPY Dyes. *J. Phys. Chem. C* 2016, *120*, 4538–4545.
- (6) Gao, Y.; Shi, E.; Deng, S.; Shiring, S. B.; Snaider, J. M.; Liang, C.; Yuan, B.; Song, R.; Janke, S. M.; Liebman-Pel áz, A.; Yoo, P.; Zeller, M.; Boudouris, B. W.; Liao, P.; Zhu, C.; Blum, V.; Yu, Y.; Savoie, B. M.; Huang, L.; Dou, L. Molecular Engineering of Organic–Inorganic Hybrid Perovskites Quantum Wells. *Nat. Chem.* **2019**, *11*, 1151–1157.
- (7) Jin, C.; Li, K.; Zhang, J.; Wang, Z.; Tan, J. N,O-Bidentated Difluoroboron Complexes Based on Pyridine-Ester Enolates: Facile Synthesis, Post-Complexation Modification, Optical Properties, and Applications. *Chin. Chem. Lett.* **2024**, *35*, 109532.

VII. NMR spectra

¹H NMR of **1a** (400 MHz, CDCl₃)

¹H NMR of **1b** (400 MHz, CDCl₃)

¹H NMR of 1c (400 MHz, CDCl₃)

¹H NMR of **2a** (400 MHz, CDCl₃)

¹⁹F NMR of **2a** (376 MHz, CDCl₃)

¹H NMR of **2a-mono** (400 MHz, CDCl₃)

¹⁹F NMR of **2a-mono** (376 MHz, CDCl₃)

¹H NMR of **2b** (400 MHz, CDCl₃)

¹H NMR of **2c** (400 MHz, CDCl₃)

-95 -100 f1 (ppm) -110 -120 -125 -130 -135 -140 -145 -55 -60 -65 -75 -80 -85 -90 -105 -115 -70

¹H NMR of **3a** (400 MHz, CDCl₃)

¹⁹F NMR of **3a** (376 MHz, CDCl₃)

¹⁹F NMR of **3b** (376 MHz, CDCl₃)

45 40 30 25 20 15 10 -15 -20 -25 -35 -4 35 -10 -30 5 f1 (ppm) 0 -5

¹H NMR of 3c (400 MHz, CDCl₃)

¹⁹F NMR of **3c** (376 MHz, CDCl₃)

¹H NMR of **3d** (400 MHz, CDCl₃)

¹⁹F NMR of **3d** (376 MHz, CDCl₃)

¹H NMR of **3e** (400 MHz, CDCl₃)

¹⁹F NMR of **3e** (376 MHz, CDCl₃)

65

¹H NMR of 3f (400 MHz, CDCl₃)

¹H NMR of 3g (400 MHz, CDCl₃)

¹⁹F NMR of **3g** (376 MHz, CDCl₃)

¹H NMR of **3h** (400 MHz, CDCl₃)

¹⁹F NMR of **3h** (376 MHz, CDCl₃)

71

¹H NMR of **3i** (400 MHz, CDCl₃)

¹³C NMR of **3i** (101 MHz, CDCl₃)

¹⁹F NMR of **3i** (376 MHz, CDCl₃)

¹H NMR of **3j** (400 MHz, CDCl₃)

¹⁹F NMR of **3j** (376 MHz, CDCl₃)

¹H NMR of **3k** (400 MHz, CDCl₃)

¹⁹F NMR of **3k** (376 MHz, CDCl₃)

¹H NMR of **4b** (400 MHz, CDCl₃)

¹⁹F NMR of **4c** (376 MHz, CDCl₃)

-127.33
-127.38

¹H NMR of 4d (400 MHz, CDCl₃)

¹H NMR of **3e-SO** (400 MHz, CDCl₃)

86

