Supporting Information

Narrow Emission band Ultraviolet/Deep-blue Thermally Activated Delayed Fluorescence Emitters Modified with Carbazole/Carboline as Donors

Pengcheng Jin,^a Xilin Yang,^b Wen-Tao Su,^a Shu-Hang Zhan,^a Xiliang Chen,^a Huaming Sun,^c Ben Yang,^a Shi-Jian Su^{*,b} and Jian-Yong Hu^{*,a}

^aKey Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China

^bState Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou 510640, PR China

^cNational Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China

Corresponding

E-mail: mssjsu@scut.edu.cn; hujianyong@snnu.edu.cn

Table of Contents

1. General methods	1
2. Device fabrication	2
3. Synthesis and characterizations	3
4. Thermal properties	5
5. X-Ray Crystallography	6
6. Theoretical calculations	7
7. Photophysical Properties	
8. Transient EL decay	
9. Electrochemical properties	24
10. Device performance	24
11. NMR spectra and Mass Spectra	
12. References	

1. General methods

 1 H/ 13 C NMR spectra (400 MHz) were recorded by a JEOL 400 MHz FT-400 NMR spectrometer referenced to 7.26 and 77.0 ppm for chloroform-D solvent with SiMe₄ as an internal reference: J-values are given in Hz. Mass spectra were obtained with a Bruker Microflex mass spectrometer in MALDI-TOF mode. Thermogravimetric analysis (TGA) was performed using a USA Waters Q600 under a nitrogen atmosphere at a heating rate of 10 °C min⁻¹. UV-vis absorption spectra were measured on a Shimadzu UV3600. Photoluminescence spectra were recorded on a PerkinElmer FL 8500 spectrofluorometer. Fluorescence quantum yields were measured using absolute methods with a Japan Hamamatsu C9920-06G. The frontier orbitals of the molecules based on the ground state geometries were calculated at B3LYP/6-31G* by Gaussian 16 program.^{S1} Cyclic voltammograms were measured on a CHI 610E A14297 in a solution of tetra-n-butylammonium hexafluorophosphate (Bu_4NPF_6) (0.1 M) in a typical three-electrode cell with a platinum sheet working electrode, a platinum wire counter electrode, and a silver/Silver chloride (Ag/Ag⁺) reference electrode in dichloromethane at a scan rate of 100 mV s⁻¹ at room temperature under N_2 atmosphere. X-ray diffraction patterns were collected using an X-ray diffractometer from Rigaku Japan. The data collection from a single crystal was conducted using a Bruker D8 venture diffractometer, equipped with graphitemonochromated Cu K α radiation ($\lambda = 1.54178$ Å). Photoluminescence spectra were recorded on a PerkinElmer FL 8500 spectrofluorometer. Phosphorescence spectrum and transient PL curves were recorded on a horiba Fluorolog-QM and excited with a 365nm laser light source

Estimation of the rate constant for RISC. Rate constants ($k_{\rm F}$, $k_{\rm IC}$, $k_{\rm ISC}$, and $k_{\rm RISC}$) were determined from the measurements of quantum yields ($\Phi_{\rm F}$ and $\Phi_{\rm TADF}$) and lifetimes ($\tau_{\rm p}$, $\tau_{\rm d}$) and of the prompt (fluorescence) and delayed (TADF) components according to Adachi's method.^{S2}

 $K_{\rm p} = 1 / \tau_{\rm p}$

 $K_{\rm d} = 1 / \tau_{\rm d}$ $K_{\rm F} = \Phi_{\rm F} / \tau_{\rm p}$ $\Phi = K_{\rm F} / (K_{\rm F} + K_{\rm IC})$ $\Phi_{\rm F} = K_{\rm F} / (K_{\rm F} + K_{\rm IC} + K_{\rm ISC})$ $K_{\rm RISC} = K_{\rm p} K_{\rm d} / (K_{\rm p} - K_{\rm ISC})$

2. Device fabrication

The multilayer OLEDs were fabricated by the vacuum-deposition method.^{S3-4} Electronic grade HAT-CN, TCTA, TAPC, TPBi, CBP, LiF, and Al were obtained from commercial sources. TDBA-Cz, TDBA-α-Cb, TDBA-β-Cb and, TDBA-γ-Cb were purified by vacuum sublimation. Soak the glass coated with ITO in an ultrasonic cleaning agent for 30 minutes, sonicate with deionized water, acetone, and isopropanol solvents for 10 minutes each, and then dry. The cleaned ITO glass is treated with perfluoromethane (CF₄) plasma and then transferred to the evaporation chamber. In a high vacuum environment (1×10^{-5} Pa), the functional layer materials, luminescent materials, and cathode materials (Al) are sequentially deposited at high temperatures. When evaporating and depositing organic material thin films, the evaporation rate is controlled at 1-2 Å s⁻¹; When evaporating LiF, the evaporation rate is controlled at 0.1 Å s⁻¹; When evaporating Al, the evaporation rate is controlled at 2 Å s^{-1} and 9 mm² of the luminescent area. All the OLEDs were measured without encapsulation at room temperature in the dark. The Current density-Voltage-Luminance (J-V-L) characteristics were measured with a Keithley 2400 source meter and a LS110 luminance meter. The electroluminescence (EL) spectra were collected using a spectrascan PR650 spectrophotometer. The EQEs were calculated from the Luminance-Current density characteristics and EL spectra with the hypothesis of Lambertian distribution.

3. Synthesis and characterizations

Scheme S1. Synthetic route for compounds TDBA-Cz, TDBA-α-Cb, TDBA-β-Cb ,and TDBA-γ-Cb.

TDBA and **TDBA-Cz** were synthesized and characterized according to literature reported procedure.^{S5-6}

Synthesis of 9-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-9H-pyrido[2,3-b]indole (TDBA-α-Cb):

7-bromo-2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (**TDBA**) (0.92 g, 2.0 mmol), 9H-Pyrido[2,3-b]indole (*a***-Cb**) (0.67 g, 4.0 mmol), CuI (0.19 g, 1.0 mmol), K₃PO₄ (2.12 g, 10.0 mmol), and trans-1,2-diaminocyclohexane (1.20 mL, 10.0 mmol) were mixed in toluene (40 mL)with a flask containing nitrogen. The reaction mixture was stirred at 110 °C for 24 h under nitrogen. After it was cooled to room temperature, the reaction mixture was quenched with brine and extracted with CH₂Cl₂. The combined organic extracts were dried with anhydrous Na₂SO₄ and evaporated. The crude product was successfully purified by column chromatography using hexane: dichloromethane (2:1) as the eluent to give **TDBA-***a***-Cb** as white solid. Yield: 35% (0.38 g). ¹H NMR (400 MHz, CDCl₃): δ = 8.80 (d, *J* = 2.40 Hz, 2H), 8.56-8.55 (dd, *J* = 1.60 Hz, 1H), 8.44-8.42 (dd, *J* = 1.60 Hz, 1H), 8.18-8.16 (d, *J* = 8.00 Hz, 1H), 7.81-7.78 (m, 3H), 7.60 (s, 3H), 7.53-7.51 (d, *J* = 8.80 Hz, 3H), 7.41-7.37 (t, ¹*J* = 8.00 Hz, ²*J* = 7.20 Hz, 1H), 1.51 (s, 18H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 158.92$, 158.40, 151.84, 146.64, 145.30, 141.87, 139.73, 131.72, 130.42, 128.55, 127.35, 121.89, 121.38, 121.15, 118.16, 116.94, 116.75, 111.05, 107.17, 107.12, 34.72, 31.73. EI-MS (m/z): calcd for C₃₇H₃₃BN₂O₂, 548.2635; found, 548.2781 [M+].

Synthesis of 9-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-9H-pyrido[3,4-b]indole (TDBA-β-Cb):

Compound **TDBA-** β -**Cb** was synthesized according to the same procedure described above for the synthesis of **TDBA-** α -**Cb**. **TDBA** (0.92 g, 2.0 mmol), 9H-Pyrido[3,4b]indole (β -**Cb**) (0.67 g, 4.0 mmol), CuI (0.19 g, 1.0 mmol), K₃PO₄ (2.12 g, 10.0 mmol), trans-1,2-diaminocyclohexane (1.20 mL, 10.0 mmol), and to give **TDBA-** β -**Cb** as white solid. Yield: 36% (0.40 g). EI-MS (m/z): calcd for C₃₇H₃₃BN₂O₂, 548.2635; found, 548.8635 [M+].

Synthesis of 5-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-5H-pyrido[4,3-b]indole (TDBA-γ-Cb):

Compound **TDBA-** γ **-Cb** was synthesized according to the same procedure described above for the synthesis of **TDBA-** α **-Cb**. **TDBA** (92 mg, 0.20 mmol), 5H-pyrido[4,3b]indole (γ **-Cb**) (67.2 mg, 0.40 mmol), CuI (19 mg, 0.10 mmol), K₃PO₄ (212 mg, 1.0 mmol), trans-1,2-diaminocyclohexane (0.12 mL, 1.0 mmol), and to give **TDBA-** γ **-Cb** as white solid. Yield: 18% (20.0 mg). EI-MS (m/z): calcd for C₃₇H₃₃BN₂O₂, 548.2635; found, 548.8709 [M+].

4. Thermal properties

Figure S1. Thermal gravimetric analysis (TGA) of **TDBA-Cz**, **TDBA-α-Cb**, **TDBA-**β-Cb and **TDBA-γ-Cb**.

Figure S2. Differential scanning calorimetry (DSC) of TDBA-Cz, TDBA-α-Cb, TDBA-β-Cb and TDBA-γ-Cb.

5. X-Ray Crystallography

_

Table S1. Crystal data and structure refinement for TDBA-α-Cb.

Parameters	TDBA-α-Cb	
CCDC number	2361056	
Empirical formula	$C_{37}H_{33}BN_2O_2$	
Formula weight	548.46	
Temperature/K	200.00	
Crystal system	triclinic	
Space group	P-1	
a/Å	8.6753(7)	
b/Å	13.0352(11)	
c/Å	13.1745(11)	
$\alpha/^{\circ}$	81.753(4)	
β/°	85.685(4)	
γ/°	82.633(4)	

Volume/Å ³	1459.8(2)
Z	2
$ ho_{calc}g/cm^3$	1.248
μ/mm ⁻¹	0.595
F(000)	580.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	6.79 to 138.264
Index ranges	$-10 \le h \le 10, -15 \le k \le 15, -15 \le l \le 15$
Reflections collected	28126
Independent reflections	5288 [$R_{int} = 0.0551$, $R_{sigma} = 0.0380$]
Data/restraints/parameters	5288/0/385
Goodness-of-fit on F ²	1.771
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1217, wR_2 = 0.3794$
Final R indexes [all data]	$R_1 = 0.1293, wR_2 = 0.3885$
Largest diff. peak/hole / e Å ⁻³	0.57/-0.47

6. Theoretical calculations

Symbolic Z-matrix: TDBA-Cz

Charge = 0 Multiplicity =	1		
С	2.24277	-1.25282	0.07514
С	0.85114	-1.21568	0.06679
С	0.11904	-0.01526	0.011
С	0.86787	1.17341	-0.05051
С	2.26012	1.18493	-0.05572
С	2.93848	-0.04001	0.01468
С	-1.117	2.50556	-0.20487
С	-2.01355	1.41253	-0.16711
С	-3.38038	1.7377	-0.31334
Н	-4.09127	0.92024	-0.32726
С	-3.8696	3.03744	-0.46056
С	-2.9223	4.07838	-0.46321
С	-1.56374	3.82174	-0.34153
Н	2.7665	-2.19802	0.11528
Н	2.79625	2.12189	-0.14296

Н	-3.24095	5.10929	-0.57048
Н	-0.83465	4.62577	-0.3588
С	-2.03561	-1.40994	0.17684
С	-1.15525	-2.51646	0.20958
Н	-4.1062	-0.8872	0.33705
С	-3.40755	-1.71514	0.31949
С	-1.62241	-3.82666	0.33724
С	-2.98472	-4.06328	0.45565
С	-3.91639	-3.00808	0.45845
Н	-0.90544	-4.64155	0.34929
Н	-3.31912	-5.08993	0.55563
В	-1.40212	-0.00356	0.00777
0	0.21341	-2.41869	0.12526
0	0.25067	2.38709	-0.11688
С	-5.4334	-3.2332	0.60842
С	-5.94367	-2.49935	1.87128
С	-6.16504	-2.67845	-0.63692
С	-5.79143	-4.72559	0.7461
Н	-5.44802	-2.87849	2.77221
Н	-5.75964	-1.42094	1.81932
Н	-7.02422	-2.64735	1.98918
Н	-5.82915	-3.18655	-1.54802
Н	-7.24775	-2.8277	-0.54296
Н	-5.98773	-1.60581	-0.76967
Н	-6.87673	-4.83661	0.84888
Н	-5.48347	-5.30273	-0.13338
Н	-5.32914	-5.17689	1.63152
С	-5.38285	3.2842	-0.61431
С	-5.90175	2.55071	-1.87386
С	-6.12464	2.74748	0.6329
С	-5.71843	4.78093	-0.76112
Н	-5.39877	2.91703	-2.77602
Н	-5.73407	1.46999	-1.81528
Н	-6.97972	2.71429	-1.99468
Н	-5.78318	3.25612	1.54166
Н	-7.20489	2.91185	0.53597
Н	-5.9632	1.67319	0.77232
Н	-6.80183	4.90747	-0.86588
Н	-5.40293	5.3586	0.11537
Н	-5.24854	5.2201	-1.64863
С	5.18927	0.78521	0.79037
С	5.17573	-0.84733	-0.7821
С	4.85051	1.71453	1.7781
С	6.5456	0.51995	0.4655

С	6.5358	-0.51747	-0.53972
С	5.88644	2.39366	2.41614
Н	3.81688	1.8977	2.04859
С	7.56743	1.21675	1.12044
С	5.68582	-2.40107	-2.32958
С	7.50039	-1.21067	-1.27003
С	7.23235	2.15597	2.09048
Н	5.64306	3.12082	3.18593
Н	8.60848	1.02041	0.87771
С	7.0606	-2.17111	-2.18114
Н	5.33236	-3.14996	-3.03569
Н	8.5602	-1.00963	-1.1367
Н	8.01522	2.70498	2.60564
Н	7.76864	-2.74053	-2.77489
Ν	4.35812	-0.04608	0.02249
С	4.73236	-1.75438	-1.64497
Н	3.83016	-1.83561	-2.29875

Symbolic Z-matrix: **TDBA-α-Cb**

Charge = 0 Multiplicity = 1

С	2.24277	-1.25282	0.07514
С	0.85114	-1.21568	0.06679
С	0.11904	-0.01526	0.011
С	0.86787	1.17341	-0.05051
С	2.26012	1.18493	-0.05572
С	2.93848	-0.04001	0.01468
С	-1.117	2.50556	-0.20487
С	-2.01355	1.41253	-0.16711
С	-3.38038	1.7377	-0.31334
Н	-4.09127	0.92024	-0.32726
С	-3.8696	3.03744	-0.46056
С	-2.9223	4.07838	-0.46321
С	-1.56374	3.82174	-0.34153
Н	2.7665	-2.19802	0.11528
Н	2.79625	2.12189	-0.14296
Н	-3.24095	5.10929	-0.57048
Н	-0.83465	4.62577	-0.3588
С	-2.03561	-1.40994	0.17684
С	-1.15525	-2.51646	0.20958
Н	-4.1062	-0.8872	0.33705
С	-3.40755	-1.71514	0.31949
С	-1.62241	-3.82666	0.33724
С	-2.98472	-4.06328	0.45565
С	-3.91639	-3.00808	0.45845

Н	-0.90544	-4.64155	0.34929
Н	-3.31912	-5.08993	0.55563
В	-1.40212	-0.00356	0.00777
0	0.21341	-2.41869	0.12526
0	0.25067	2.38709	-0.11688
С	-5.4334	-3.2332	0.60842
С	-5.94367	-2.49935	1.87128
С	-6.16504	-2.67845	-0.63692
С	-5.79143	-4.72559	0.7461
Н	-5.44802	-2.87849	2.77221
Н	-5.75964	-1.42094	1.81932
Н	-7.02422	-2.64735	1.98918
Н	-5.82915	-3.18655	-1.54802
Н	-7.24775	-2.8277	-0.54296
Н	-5.98773	-1.60581	-0.76967
Н	-6.87673	-4.83661	0.84888
Н	-5.48347	-5.30273	-0.13338
Н	-5.32914	-5.17689	1.63152
С	-5.38285	3.2842	-0.61431
С	-5.90175	2.55071	-1.87386
С	-6.12464	2.74748	0.6329
С	-5.71843	4.78093	-0.76112
Н	-5.39877	2.91703	-2.77602
Н	-5.73407	1.46999	-1.81528
Н	-6.97972	2.71429	-1.99468
Н	-5.78318	3.25612	1.54166
Н	-7.20489	2.91185	0.53597
Н	-5.9632	1.67319	0.77232
Н	-6.80183	4.90747	-0.86588
Н	-5.40293	5.3586	0.11537
Н	-5.24854	5.2201	-1.64863
С	5.18927	0.78521	0.79037
С	5.17573	-0.84733	-0.7821
С	4.85051	1.71453	1.7781
С	6.5456	0.51995	0.4655
С	6.5358	-0.51747	-0.53972
С	5.88644	2.39366	2.41614
Н	3.81688	1.8977	2.04859
С	7.56743	1.21675	1.12044
С	5.68582	-2.40107	-2.32958
С	7.50039	-1.21067	-1.27003
С	7.23235	2.15597	2.09048
Н	5.64306	3.12082	3.18593
Н	8.60848	1.02041	0.87771

С	7.0606	-2.17111	-2.18114
Н	5.33221	-3.14718	-3.03854
Н	8.5602	-1.00963	-1.1367
Н	8.01522	2.70498	2.60564
Н	7.76864	-2.74053	-2.77489
Ν	4.35812	-0.04608	0.02249
Ν	4.73236	-1.75438	-1.64497

Symbolic Z-matrix: TDBA-β-Cb

Charge = 0 Multiplicity = 1

С	2.24277	-1.25282	0.07514
С	0.85114	-1.21568	0.06679
С	0.11904	-0.01526	0.011
С	0.86787	1.17341	-0.05051
С	2.26012	1.18493	-0.05572
С	2.93848	-0.04001	0.01468
С	-1.117	2.50556	-0.20487
С	-2.01355	1.41253	-0.16711
С	-3.38038	1.7377	-0.31334
Н	-4.09127	0.92024	-0.32726
С	-3.8696	3.03744	-0.46056
С	-2.9223	4.07838	-0.46321
С	-1.56374	3.82174	-0.34153
Н	2.7665	-2.19802	0.11528
Н	2.79625	2.12189	-0.14296
Н	-3.24095	5.10929	-0.57048
Н	-0.83465	4.62577	-0.3588
С	-2.03561	-1.40994	0.17684
С	-1.15525	-2.51646	0.20958
Н	-4.1062	-0.8872	0.33705
С	-3.40755	-1.71514	0.31949
С	-1.62241	-3.82666	0.33724
С	-2.98472	-4.06328	0.45565
С	-3.91639	-3.00808	0.45845
Н	-0.90544	-4.64155	0.34929
Н	-3.31912	-5.08993	0.55563
В	-1.40212	-0.00356	0.00777
0	0.21341	-2.41869	0.12526
0	0.25067	2.38709	-0.11688
С	-5.4334	-3.2332	0.60842
С	-5.94367	-2.49935	1.87128
С	-6.16504	-2.67845	-0.63692
С	-5.79143	-4.72559	0.7461
Н	-5.44802	-2.87849	2.77221

Н	-5.75964	-1.42094	1.81932
Н	-7.02422	-2.64735	1.98918
Н	-5.82915	-3.18655	-1.54802
Н	-7.24775	-2.8277	-0.54296
Н	-5.98773	-1.60581	-0.76967
Н	-6.87673	-4.83661	0.84888
Н	-5.48347	-5.30273	-0.13338
Н	-5.32914	-5.17689	1.63152
С	-5.38285	3.2842	-0.61431
С	-5.90175	2.55071	-1.87386
С	-6.12464	2.74748	0.6329
С	-5.71843	4.78093	-0.76112
Н	-5.39877	2.91703	-2.77602
Н	-5.73407	1.46999	-1.81528
Н	-6.97972	2.71429	-1.99468
Н	-5.78318	3.25612	1.54166
Н	-7.20489	2.91185	0.53597
Н	-5.9632	1.67319	0.77232
Н	-6.80183	4.90747	-0.86588
Н	-5.40293	5.3586	0.11537
Н	-5.24854	5.2201	-1.64863
С	5.18927	0.78521	0.79037
С	5.17573	-0.84733	-0.7821
С	4.85051	1.71453	1.7781
С	6.5456	0.51995	0.4655
С	6.5358	-0.51747	-0.53972
С	5.88644	2.39366	2.41614
Н	3.81688	1.8977	2.04859
С	7.56743	1.21675	1.12044
С	7.50039	-1.21067	-1.27003
С	7.23235	2.15597	2.09048
Н	5.64306	3.12082	3.18593
Н	8.60848	1.02041	0.87771
С	7.0606	-2.17111	-2.18114
Н	8.5602	-1.00963	-1.1367
Н	8.01522	2.70498	2.60564
Н	7.76864	-2.74053	-2.77489
Ν	4.35812	-0.04608	0.02249
С	4.73236	-1.75438	-1.64497
Н	3.83016	-1.83561	-2.29875
Ν	5.68582	-2.40107	-2.32958

Symbolic Z-matrix: **TDBA-***γ***-Cb**

Charge = 0 Multiplicity = 1

С	2.24277	-1.25282	0.07514
С	0.85114	-1.21568	0.06679
С	0.11904	-0.01526	0.011
С	0.86787	1.17341	-0.05051
С	2.26012	1.18493	-0.05572
С	2.93848	-0.04001	0.01468
С	-1.117	2.50556	-0.20487
С	-2.01355	1.41253	-0.16711
С	-3.38038	1.7377	-0.31334
Н	-4.09127	0.92024	-0.32726
С	-3.8696	3.03744	-0.46056
С	-2.9223	4.07838	-0.46321
С	-1.56374	3.82174	-0.34153
Н	2.7665	-2.19802	0.11528
Н	2.79625	2.12189	-0.14296
Н	-3.24095	5.10929	-0.57048
Н	-0.83465	4.62577	-0.3588
С	-2.03561	-1.40994	0.17684
С	-1.15525	-2.51646	0.20958
Н	-4.1062	-0.8872	0.33705
С	-3.40755	-1.71514	0.31949
С	-1.62241	-3.82666	0.33724
С	-2.98472	-4.06328	0.45565
С	-3.91639	-3.00808	0.45845
Н	-0.90544	-4.64155	0.34929
Н	-3.31912	-5.08993	0.55563
В	-1.40212	-0.00356	0.00777
0	0.21341	-2.41869	0.12526
0	0.25067	2.38709	-0.11688
С	-5.4334	-3.2332	0.60842
С	-5.94367	-2.49935	1.87128
С	-6.16504	-2.67845	-0.63692
С	-5.79143	-4.72559	0.7461
Н	-5.44802	-2.87849	2.77221
Н	-5.75964	-1.42094	1.81932
Н	-7.02422	-2.64735	1.98918
Н	-5.82915	-3.18655	-1.54802
Н	-7.24775	-2.8277	-0.54296
Н	-5.98773	-1.60581	-0.76967
Н	-6.87673	-4.83661	0.84888
Н	-5.48347	-5.30273	-0.13338
Н	-5.32914	-5.17689	1.63152
С	-5.38285	3.2842	-0.61431
С	-5.90175	2.55071	-1.87386

С	-6.12464	2.74748	0.6329
С	-5.71843	4.78093	-0.76112
Н	-5.39877	2.91703	-2.77602
Н	-5.73407	1.46999	-1.81528
Н	-6.97972	2.71429	-1.99468
Н	-5.78318	3.25612	1.54166
Н	-7.20489	2.91185	0.53597
Н	-5.9632	1.67319	0.77232
Н	-6.80183	4.90747	-0.86588
Н	-5.40293	5.3586	0.11537
Н	-5.24854	5.2201	-1.64863
С	5.18927	0.78521	0.79037
С	5.17573	-0.84733	-0.7821
С	4.85051	1.71453	1.7781
С	6.5456	0.51995	0.4655
С	6.5358	-0.51747	-0.53972
С	5.88644	2.39366	2.41614
Н	3.81688	1.8977	2.04859
С	7.56743	1.21675	1.12044
С	5.68582	-2.40107	-2.32958
С	7.50039	-1.21067	-1.27003
С	7.23235	2.15597	2.09048
Н	5.64306	3.12082	3.18593
Н	8.60848	1.02041	0.87771
Н	5.33221	-3.14718	-3.03854
Н	8.5602	-1.00963	-1.1367
Н	8.01522	2.70498	2.60564
Ν	4.35812	-0.04608	0.02249
С	4.73236	-1.75438	-1.64497
Н	3.67683	-1.90507	-1.73468
Ν	7.0606	-2.17111	-2.18114

 Table S2. Calculated energy levels, oscillator strengths (f), and orbital transition

 analyses for TDBA-Cz.

Excited state	E _g [eV]	E _g [nm]	f	Transition acc	Coefficient		
S1	3.1896	388.71	0.2243	НОМО	\rightarrow	LUMO	0.70285
S2	3.3955	365.14	0.1275	HOMO-1	\rightarrow	LUMO	0.69646
T1	2.8836	429.97	0.0000	HOMO-1	\rightarrow	LUMO	0.69505
тэ	2 0720	417.05	0.0000	НОМО-6	\rightarrow	LUMO	0.14534
12	2.9729	417.05	0.0000	НОМО-3	\rightarrow	LUMO	0.11366

				НОМО	\rightarrow	LUMO	0.64773
				НОМО	\rightarrow	LUMO+2	0.11648
				HOMO-8	\rightarrow	LUMO+9	-0.13371
				HOMO-4	\rightarrow	LUMO+1	-0.14568
Т2	2 1604	201 10	0.0000	HOMO-4	\rightarrow	LUMO+8	-0.10815
13 3.169	5.1094	391.19	0.0000	НОМО-2	\rightarrow	LUMO	-0.13769
				НОМО-2	\rightarrow	LUMO+1	0.58985
				НОМО	\rightarrow	LUMO+6	-0.25141
			0.0000	HOMO-5	\rightarrow	LUMO+4	0.15060
				НОМО-3	\rightarrow	LUMO	0.59346
T4	3.3113	374.43		НОМО-3	\rightarrow	LUMO+5	-0.14774
				HOMO-1	\rightarrow	LUMO+4	0.17725
				НОМО	\rightarrow	LUMO	-0.15646
Т5	2 20/1	265.20	0.0000	HOMO-4	\rightarrow	LUMO+6	0.13228
13	T5 3.3941 365.29 0.0		0.0000	НОМО	\rightarrow	LUMO+6	0.66707

Table S3. Calculated energy levels, oscillator strengths (*f*), and orbital transition analyses for **TDBA-\alpha-Cb**.

Excited state	E _g [eV]	E _g [nm]	f	Transition acc	Transition (D: donor unit, A: acceptor unit)				
S1	3.3627	368.71	0.1242	НОМО	\rightarrow	LUMO	0.69751		
S2	3.5419	350.05	0.2967	НОМО	\rightarrow	LUMO	0.70078		
T1	2.8514	434.82	0.0000	НОМО	\rightarrow	LUMO	0.69595		
	2 1220	9 396.90	0.0000	НОМО-2	\rightarrow	LUMO+1	0.56655		
тэ				HOMO-1	\rightarrow	LUMO	0.11734		
12	5.1259			HOMO-1	\rightarrow	LUMO+1	0.23155		
				HOMO-1	\rightarrow	LUMO+4	0.19837		
Т2	2 1611	3.1611 392.21	0.0000	НОМО-5	\rightarrow	LUMO	-0.20254		
T3	3.1611		0.0000	НОМО-3	\rightarrow	LUMO	-0.29185		

				НОМО-2	$ $ \rightarrow	LUMO+1	-0.13871
				HOMO-1	$ $ \rightarrow	LUMO	0.49998
				HOMO-1	\rightarrow	LUMO+2	0.10711
				НОМО	\rightarrow	LUMO+3	0.13567
				НОМО	\rightarrow	LUMO+5	0.12794
				НОМО-3	\rightarrow	LUMO	0.49702
	T4 3 3626		0.0000	НОМО-3	\rightarrow	LUMO+6	-0.10610
T4		368.72		НОМО-2	\rightarrow	LUMO+1	-0.11379
14	3.3020			HOMO-1	\rightarrow	LUMO	0.27294
				HOMO-1	\rightarrow	LUMO+1	0.27924
				НОМО	\rightarrow	LUMO+5	-0.10981
				НОМО-3	\rightarrow	LUMO	-0.24265
Т5	2 2066	266 10	0.0000	НОМО-2	\rightarrow	LUMO+1	-0.18405
15	5.5800	500.10	0.0000	HOMO-1	\rightarrow	LUMO	-0.16228
				HOMO-1	\rightarrow	LUMO+1	0.57208

Table S4. Calculated energy levels, oscillator strengths (f), and orbital transition analyses for **TDBA-** β **-Cb**.

Excited state	E _g [eV]	E _g [nm]	f	Transition acc	Transition (D: donor unit, A: acceptor unit)				
S1	3.3407	371.13	0.2448	НОМО	\rightarrow	LUMO	0.70225		
S2	3.4009	364.57	0.1311	HOMO-1	\rightarrow	LUMO	0.69705		
T1	2.8829	430.07	0.0000	HOMO-1	\rightarrow	LUMO	0.69606		
	3.0822	322 402.26	0.0000	НОМО-6	\rightarrow	LUMO	0.17713		
				НОМО-3	\rightarrow	LUMO	0.18723		
T2				HOMO-1	\rightarrow	LUMO+3	-0.12119		
				НОМО	\rightarrow	LUMO	0.60345		
				НОМО	\rightarrow	LUMO+2	0.10250		
Т3	3.1941	388.16	0.0000	НОМО-2	\rightarrow	LUMO+1	-0.25827		

				НОМО	\rightarrow	LUMO+1	0.61464
				НОМО	\rightarrow	LUMO+5	0.11391
				НОМО-9	\rightarrow	LUMO+9	-0.10241
				HOMO-7	\rightarrow	LUMO+1	-0.15317
T4	3.2713	379.01	0.0000	НОМО-2	\rightarrow	LUMO+1	0.51283
				НОМО	\rightarrow	LUMO+1	0.29821
				НОМО	\rightarrow	LUMO+5	-0.25666
				НОМО-5	\rightarrow	LUMO+4	0.14003
				НОМО-3	\rightarrow	LUMO	0.58851
T5	3.3201	373.44	0.0000	НОМО-3	\rightarrow	LUMO+6	-0.13821
				HOMO-1	\rightarrow	LUMO+4	0.16117
				НОМО	\rightarrow	LUMO	-0.23890

Table S5. Calculated energy levels, oscillator strengths (f), and orbital transition analyses for **TDBA-** γ **-Cb**.

Excited state	E _g [eV]	E _g [nm]	f	Transition acc	Transition (D: donor unit, A: acceptor unit)				
C1	2 2007	264.70	0.10(9	HOMO-1	\rightarrow	LUMO	0.42325		
51	5.3997	304.70	0.1908	НОМО	\rightarrow	LUMO	0.55676		
52	2 4166	262.80	0 2027	HOMO-1	\rightarrow	LUMO	0.55367		
82	5.4100	302.89	0.2037	НОМО	\rightarrow	LUMO	-0.42704		
T1	2 8005	428.94	0.0000	HOMO-1	\rightarrow	LUMO	0.68486		
11	2.8905		0.0000	НОМО	\rightarrow	LUMO	0.12377		
			0.0000	НОМО-6	$ $ \rightarrow	LUMO	-0.18157		
				НОМО-3	$ $ \rightarrow	LUMO	-0.20626		
тэ	2 1000			HOMO-1	\rightarrow	LUMO	-0.11079		
12	5.1009	399.04		HOMO-1	\rightarrow	LUMO+3	-0.12962		
				НОМО	\rightarrow	LUMO	0.57176		
				НОМО	\rightarrow	LUMO+2	0.12393		
	2 2222	384.18	0.0000	HOMO-10	\rightarrow	LUMO+9	0.10999		
15	3.2273		0.0000	HOMO-8	\rightarrow	LUMO+1	-0.11250		

				НОМО-2	\rightarrow	LUMO	-0.13406
				НОМО-2	\rightarrow	LUMO+1	0.58232
				НОМО	\rightarrow	LUMO+4	0.22921
				НОМО-5	\rightarrow	LUMO+5	-0.13527
				НОМО-3	\rightarrow	LUMO	0.58397
T4	3.3248	372.91	0.0000	НОМО-3	\rightarrow	LUMO+6	-0.12949
				HOMO-1	\rightarrow	LUMO+5	-0.15246
				НОМО	\rightarrow	LUMO	0.24785
				HOMO-7	\rightarrow	LUMO+6	-0.10309
				HOMO-6	\rightarrow	LUMO+3	-0.11216
				НОМО-5	\rightarrow	LUMO	0.50374
Τ.5	2 4027	264.27	0.0000	НОМО-5	\rightarrow	LUMO+2	-0.11449
15	5.4027	304.37	0.0000	НОМО-5	\rightarrow	LUMO+6	-0.11610
				НОМО-3	\rightarrow	LUMO+5	-0.25537
				HOMO-1	\rightarrow	LUMO+2	0.19735

Figure S3. Energy levels of single and triple excited states of molecules are

calculated by TD-DFT.

E	ner	gy levels	S	1	S2	Sã	3	T1	1	ſ 2	Т3
	TD	BA-Cz	2.79	012 3	.2906	3.35	86	2.736	58 2.9	422	3.1747
TDBA-α-Cb		3.10	98 3	.4411	3.84	49	2.715	56 3.1	196	3.1336	
Т	Dł	ЗА-β-СЬ	2.98	323 3	.3311	3.79	25	2.738	37 3.0	667	3.2021
TDBA-γ-Cb		3.21	.13 3	.3327	3.66	49	2.736	51 3.1	245	3.2231	
		S ₀ -S ₁	S ₀ -S ₂	S ₀ -T ₁	S ₀ -T ₂			S ₀ -S ₁	S ₀ -S ₂	S ₀ -T ₁	S ₀ -T ₂
TDBA-Cz	HONTO	35435 - 35545 3757 - 3757 99.6% CT 35435 - 35545	97.5% LE	3,555 - 5555 300 37,4% LE 3,555 - 5555 37,4% LE	95.2% CT	TDBA-α-Cb	HONTO LUNTO	97.7% LE	99.1% CT	97.5% LE	المَّنْ المَّالَةِ مَنْ المَّالَةِ مَنْ المَّالَةِ مَنْ المَّالَةِ مَنْ المَّالَةِ مَنْ المَّالَةُ مَنْ المَّالَةُ مَنْ المَّالَةُ مَنْ المَّالَةُ مَنْ المَّالَةُ مَنْ المَّالَةُ مَنْ المُحْلَقُونَةُ مَنْ المُحْ 1940 من المحالية المح 1940 من المحالية المح
TDBA-	HONTO	99.5% CT	97.5% LE	97.3% LE	90.7% CT+LE	TDBA-	HONTO	97.6% LE	99.3% CT	97.3% LE	المراجع مراجع م مراجع مراجع مراج مراجع مراجع مرا
β-Сь	LUNTO					-γ-Cb	LUNTO				

Table S6. Energy levels of single and triple excited states of molecules.

Figure S4. Highest occupied and lowest unoccupied NTOs (HONTOs and LUNTOs) of TDBA-Cz, TDBA-α-Cb, TDBA-β-Cb and TDBA-γ-Cb.

7. Photophysical Properties

Figure S5. Fluorescence spectra of **TDBA-Cz** (a), **TDBA-\alpha-Cb** (b), **TDBA-\beta-Cb** (c), and **TDBA-\gamma-Cb** (d) different concentrations in toluene.

Figure S6. Fluorescence (77 K) and phosphorescence (77K) spectra of **TDBA-Cz** (a), **TDBA-α-Cb** (b), **TDBA-β-Cb** (c) and **TDBA-γ-Cb** (d).

Figure S7. UV-vis absorption (a) and fluorescence spectra (b) of the compound **TDBA-Cz** were recorded in different solvents at $\sim 10^{-5}$ M.

Figure S8. UV-vis absorption (a) and fluorescence spectra (b) of the compound **TDBA-\alpha-Cb** were recorded in different solvents at ~10⁻⁵ M.

Figure S9. UV-vis absorption (a) and fluorescence spectra (b) of the compound **TDBA-** β -**Cb** were recorded in different solvents at ~10⁻⁵ M.

Figure S10. UV-vis absorption (a) and fluorescence spectra (b) of the compound **TDBA-** γ -**Cb** were recorded in different solvents at ~10⁻⁵ M.

Figure S11. Normalized fluorescence spectra in dilute toluene solution (black) and CBP films with 3wt% doping concentration (red) of TDBA-Cz (a), TDBA- α -Cb (b), TDBA- β -Cb (c), and TDBA- γ -Cb (d).

Compounds		TDBA-Cz	TDBA-α-Cb	TDBA-β-Cb	TDBA-γ-Cb
Hawawa	$\lambda_{em}(nm)$	389	390	383	384
Hexane	FWHM(nm)	21	21 22		20
Toluene	$\lambda_{em}(nm)$	394	396	392/407	392
	FWHM(nm)	24	26	55	23
THE	$\lambda_{em}(nm)$	394	395	391	391
IHF	FWHM(nm)	33	25	34	25
DCM	$\lambda_{em}(nm)$	396	397	392	392

Table S7. Emission peak and FWHM of **TDBA-Cz**, **TDBA-\alpha-Cb**, **TDBA-\beta-Cb** and **TDBA-\gamma-Cb** in different solvents.

	FWHM(nm)	38	26	35	25
DME	$\lambda_{em}(nm)$	456	397	372/391	398
DMIF	FWHM(nm)	84	34	75	36

8. Transient PL decay

Figure S12. The transient PL decay spectra of TDBA-Cz (a), TDBA- α -Cb (b), TDBA- β -Cb (c), and TDBA- γ -Cb (d) in toluene at various temperatures.

9. Electrochemical properties

Figure S13. Cyclic voltammetry (CV) measurements of **TDBA-Cz**, **TDBA-α-Cb**, **TDBA-β-Cb**, and **TDBA-γ-Cb**.

10. Device performance

Figure S14. Device structure, energy levels, and molecular structures used in these devices.

Figure S15. (a) Current Efficiency versus luminance curves, (b) Power Efficiencies versus luminance curves of Device A-D based CBP doped devices.

11. NMR spectra and Mass Spectra

Figure S16. ¹H NMR spectrum of TDBA-α-Cb (400 MHz, CDCl₃, *r.t.*).

f1(ppm)

Figure S18. Mass spectra of TDBA-α-Cb.

Figure S19. Mass spectra of TDBA-β-Cb.

Figure S20. Mass spectra of TDBA-γ-Cb.

12. References

- S1 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, revision A.03. Wallingford CT: Gaussian, Inc.; 2016.
- S2 J. Ochi, Y. Yamasaki, K. Tanaka, Y. Kondo, K. Isayama, S. Oda, M. Kondo, T.

Hatakeyama, Nat. Commun., 2024, 15, 2361.

- S3 L. Chen, Y. Jiang, H. Nie, R. Hu, H. S. Kwok, F. Huang, A. Qin, Z. Zhao, B. Z. Tang, ACS Appl. Mater. Interfaces, 2014, 6, 17215-17225.
- S4 W. Qin, Z. Yang, Y. Jiang, J. W. Y. Lam, G. Liang, H. S. Kwok, B. Z. Tang, *Chem. Mater.*, 2015, 27, 3892-3901.
- S5 D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H. Kwon, *Nat. Photonics.*, 2019, **13**, 540-546.
- S6 J. F. Joung, M. Han, J. Hwang, M. Jeong, D. H. Choi, S. Park, *JACS Au.*, 2021, 1, 427-438.