Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

## Electronic Supplementary Information (ESI) Calibration of Several First Excited State Properties for Organic Molecules through Systematic Comparison of TDDFT with Experimental Spectra

Xia Wu,\*<sup>a</sup> Xiaoyu Xie \*<sup>b</sup> and Alessandro Troisi \*<sup>a</sup>

- a. Department of Chemistry, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
- b. Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China.
- \* Email: xiawu@liverpool.ac.uk, xiaoyuxie@sdu.edu.cn, A.Troisi@liverpool.ac.uk





c152









ó

 $NH_2$ 

SO₃

c102

c152a

ĊF₃

0

c7

c153









c2











c6

0





ddi

0

C۱

SO3H

ir125





dmetc

dqoci

0

N

dci-2



0

ő



ŃН





dmq



cs7







so₃H

f7ga



`SO₃H

ir144





Ó







ptp



pheox



pyr2



,∞NH2

HN.

pqp



| HN



NH<sub>2</sub> H<sub>2</sub>N. 0 соон rh110

ò rh123

ò

0

H<sub>2</sub>N

rh19a



.NH<sup>+</sup>

0

ò











rhb





sty14

tbs



sty9



Figure S1. The molecule structures of 71 dyes in this work. The labels of the compounds are those used in the references given.

tmi

| NH<sup>+</sup>

ò

Ю

| ID    | Solvent            | $e_0$ (cm <sup>-1</sup> ) | ω (cm <sup>-1</sup> ) | S     | $\sigma_0$ (cm <sup>-1</sup> ) | $\Delta\sigma$ (cm <sup>-1</sup> ) | f <sub>exp</sub> | error |
|-------|--------------------|---------------------------|-----------------------|-------|--------------------------------|------------------------------------|------------------|-------|
| 061   | Ethanol            | 26746.331                 | 1913.952              | 0.609 | 1153.683                       | 228.199                            | 0.093            | 0.017 |
| 068   | Methanol           | 23494.270                 | 1890.654              | 0.650 | 1463.281                       | 257.431                            | 0.094            | 0.015 |
| 077   | Methanol           | 23090.179                 | 1994.296              | 0.554 | 1554.254                       | 263.276                            | 0.148            | 0.013 |
| 085   | Methanol           | 29790.788                 | 1968.035              | 1.310 | 1716.600                       | 789.602                            | 0.214            | 0.018 |
| 099   | Ethanol            | 24979.799                 | 1672.874              | 0.756 | 1098.153                       | 138.596                            | 0.080            | 0.022 |
| bbo   | Cyclohexane        | 28652.551                 | 1765.056              | 1.166 | 1162.739                       | 152.400                            | 1.133            | 0.029 |
| bbq   | Cyclohexane        | 31854.710                 | 1845.265              | 1.048 | 1443.540                       | 309.570                            | 1.383            | 0.018 |
| bfl   | Cyclohexane        | 30662.199                 | 1936.038              | 1.076 | 1090.482                       | 619.790                            | 1.328            | 0.023 |
| bmq   | Cyclohexane        | 34380.467                 | 1995.617              | 1.243 | 1354.415                       | 3.850                              | 0.930            | 0.012 |
| bsf   | Ethanol            | 22699.013                 | 1424.953              | 1.037 | 888.987                        | 31.420                             | 0.150            | 0.009 |
| c102  | Ethanol            | 25212.296                 | 1614.812              | 0.854 | 959.514                        | 120.910                            | 0.403            | 0.013 |
| c152  | Ethanol            | 24513.526                 | 1703.809              | 0.820 | 1093.269                       | 0.140                              | 0.380            | 0.009 |
| c152a | Ethanol            | 24281.173                 | 1782.693              | 0.685 | 1124.459                       | 19.920                             | 0.414            | 0.013 |
| c153  | Ethanol            | 22900.659                 | 1556.259              | 0.975 | 1022.427                       | 79.120                             | 0.388            | 0.020 |
| c2    | Ethanol            | 26579.770                 | 1646.190              | 0.888 | 898.116                        | 14.930                             | 0.391            | 0.011 |
| c30   | Ethanol            | 23660.887                 | 1431.507              | 0.845 | 867.288                        | 80.830                             | 0.705            | 0.015 |
| c307  | Ethanol            | 24376.170                 | 1582.836              | 1.043 | 972.676                        | 60.390                             | 0.376            | 0.016 |
| c466  | Ethanol            | 25851.848                 | 1529.049              | 0.893 | 905.606                        | 50.630                             | 0.423            | 0.007 |
| c47   | Ethanol            | 26127.239                 | 1462.795              | 0.977 | 863.987                        | 108.960                            | 0.450            | 0.006 |
| c500  | Ethanol            | 24244.030                 | 1501.247              | 1.183 | 919.847                        | 50.170                             | 0.384            | 0.007 |
| c510  | Ethanol            | 22783.887                 | 1129.778              | 1.298 | 809.406                        | 217.130                            | 0.620            | 0.011 |
| c522  | Ethanol            | 23596.029                 | 1616.518              | 0.910 | 975.210                        | 0.800                              | 0.390            | 0.010 |
| c6    | Ethanol            | 21379.352                 | 1217.276              | 1.100 | 589.759                        | 102.590                            | 0.616            | 0.020 |
| c6h   | Ethanol            | 24814.115                 | 1530.350              | 0.879 | 920.823                        | 74.560                             | 0.443            | 0.009 |
| c7    | Ethanol            | 21730.359                 | 938.106               | 1.997 | 481.788                        | 285.550                            | 0.849            | 0.011 |
| cs3   | Ethanol            | 27538.454                 | 1461.559              | 0.786 | 742.234                        | 7.070                              | 0.309            | 0.009 |
| cs7   | Ethanol            | 28378.867                 | 1496.435              | 0.792 | 774.579                        | 15.740                             | 0.320            | 0.013 |
| dasbt | Ethanol            | 18465.229                 | 976.295               | 1.255 | 694.118                        | 234.510                            | 0.776            | 0.021 |
| daspi | Ethanol            | 20873.819                 | 1534.443              | 0.906 | 1081.111                       | 242.820                            | 0.734            | 0.019 |
| dci-2 | Ethanol            | 16484.222                 | 1242.845              | 0.551 | 354.025                        | 88.500                             | 1.118            | 0.019 |
| ddi   | Ethanol            | 14082.220                 | 1183.993              | 0.497 | 346.364                        | 149.080                            | 1.385            | 0.030 |
| dmetc | Ethanol            | 18387.716                 | 917.621               | 0.576 | 501.885                        | 183.900                            | 0.869            | 0.021 |
| dmq   | Cyclohexane        | 33425.552                 | 1986.306              | 1.118 | 1344.982                       | 55.560                             | 1.016            | 0.010 |
| doci  | Ethanol            | 20573.635                 | 920.379               | 0.914 | 345.547                        | 207.240                            | 1.012            | 0.013 |
| dodci | Ethylene<br>glycol | 17050.104                 | 745.956               | 0.813 | 348.457                        | 381.410                            | 1.699            | 0.020 |
| dps   | Cyclohexane        | 28787.023                 | 1700.010              | 1.433 | 1125.132                       | 358.260                            | 1.455            | 0.026 |
| dqoci | Ethanol            | 16690.441                 | 573.715               | 1.167 | 327.236                        | 223.660                            | 0.991            | 0.023 |
| f7ga  | Ethanol            | 21910.547                 | 1470.019              | 0.819 | 876.592                        | 0.020                              | 0.231            | 0.011 |
| fl27  | Methanol           | 19606.715                 | 920.731               | 0.663 | 369.173                        | 349.940                            | 0.728            | 0.018 |
| hditc | Ethanol            | 12771.064                 | 832.393               | 0.843 | 325.135                        | 378.890                            | 1.525            | 0.019 |

Table S1. The fitting details of all dyes in this work.

| hidci | Ethanol     | 15578.305 | 953.618  | 0.613 | 328.707  | 239.200 | 1.344 | 0.018 |
|-------|-------------|-----------|----------|-------|----------|---------|-------|-------|
| hitci | Ethanol     | 13440.777 | 841.202  | 0.777 | 337.023  | 433.010 | 1.390 | 0.026 |
| ir125 | Ethanol     | 12663.488 | 810.101  | 0.808 | 327.737  | 396.950 | 1.306 | 0.021 |
| ir144 | Ethanol     | 13130.198 | 839.164  | 0.747 | 595.261  | 232.390 | 1.199 | 0.015 |
| pheox | Ethanol     | 17662.449 | 963.381  | 1.369 | 706.090  | 206.680 | 0.423 | 0.021 |
| pqp   | Cyclohexane | 32868.423 | 1991.818 | 0.994 | 1406.662 | 101.840 | 1.040 | 0.012 |
| ptp   | Cyclohexane | 34448.128 | 1846.001 | 1.349 | 1264.402 | 2.310   | 0.958 | 0.013 |
| pyr1  | Ethanol     | 19538.142 | 1866.698 | 0.844 | 1277.380 | 103.210 | 0.845 | 0.015 |
| pyr2  | Ethanol     | 19227.864 | 1984.359 | 0.661 | 1328.790 | 65.630  | 0.907 | 0.011 |
| pyr4  | Ethanol     | 17291.275 | 1550.152 | 1.041 | 1122.428 | 126.260 | 0.878 | 0.009 |
| q390  | Ethanol     | 28007.960 | 835.208  | 1.945 | 356.615  | 379.340 | 0.361 | 0.019 |
| qui   | Cyclohexane | 31919.952 | 1725.159 | 1.008 | 1567.052 | 453.220 | 1.558 | 0.014 |
| rh101 | Ethanol     | 17411.416 | 990.776  | 0.587 | 374.126  | 303.880 | 0.691 | 0.019 |
| rh110 | Ethanol     | 19612.833 | 826.420  | 0.718 | 378.760  | 357.390 | 0.614 | 0.017 |
| rh123 | Ethanol     | 19527.726 | 872.175  | 0.624 | 381.142  | 340.870 | 0.556 | 0.018 |
| rh19a | Methanol    | 18913.264 | 978.471  | 0.550 | 401.665  | 261.800 | 0.804 | 0.013 |
| rh6g  | Ethanol     | 18850.152 | 921.879  | 0.593 | 389.062  | 284.870 | 0.715 | 0.013 |
| rh700 | Ethanol     | 15467.184 | 1241.540 | 0.616 | 359.330  | 167.370 | 0.647 | 0.031 |
| rhb   | Ethanol     | 18369.244 | 1037.628 | 0.472 | 410.811  | 192.560 | 0.617 | 0.014 |
| sr101 | Ethanol     | 17360.413 | 1005.039 | 0.547 | 343.151  | 317.570 | 0.815 | 0.029 |
| srhb  | Ethanol     | 18035.036 | 998.930  | 0.552 | 372.471  | 260.310 | 0.693 | 0.024 |
| sty11 | Ethanol     | 16819.329 | 1957.404 | 0.622 | 1275.559 | 83.030  | 0.980 | 0.014 |
| sty14 | Ethanol     | 16146.458 | 1848.037 | 0.843 | 1543.531 | 256.080 | 1.264 | 0.016 |
| sty15 | Ethanol     | 13933.974 | 1484.501 | 1.534 | 879.402  | 134.780 | 0.974 | 0.010 |
| sty20 | Ethanol     | 14697.723 | 1926.908 | 0.824 | 1461.345 | 284.270 | 1.132 | 0.022 |
| sty6  | Ethanol     | 15707.763 | 996.461  | 1.657 | 600.898  | 317.520 | 1.218 | 0.012 |
| sty8  | Ethanol     | 16788.467 | 1760.925 | 0.780 | 953.988  | 15.660  | 1.152 | 0.023 |
| sty9  | Ethanol     | 16161.630 | 1997.636 | 0.811 | 1264.811 | 8.110   | 1.148 | 0.022 |
| tbs   | Cyclohexane | 31313.246 | 1933.549 | 0.879 | 1490.848 | 421.250 | 1.874 | 0.019 |
| tmi   | Cyclohexane | 32821.558 | 1851.815 | 1.065 | 1459.528 | 277.070 | 1.259 | 0.015 |
| tmq   | Cyclohexane | 35965.135 | 1517.588 | 1.353 | 1692.059 | 118.360 | 1.146 | 0.023 |

| Comput         | Exp. Vs. Cal. |              |                                                  |                 |
|----------------|---------------|--------------|--------------------------------------------------|-----------------|
| Functional     | Basis Set     | PCM<br>(Y/N) | <i>R</i> <sup>2</sup> ( <i>E</i> <sub>S1</sub> ) | $R^{2}(f_{S1})$ |
| <b>B3LYP</b>   | 6-31G(d)      | Ν            | 0.8855                                           | 0.7595          |
| <b>B3LYP</b>   | 6-31G(d)      | Υ            | 0.9079                                           | 0.8160          |
| <b>B3LYP</b>   | def2-SVP      | Ν            | 0.8759                                           | 0.7325          |
| <b>B3LYP</b>   | def2-SVP      | Υ            | 0.9064                                           | 0.7561          |
| <b>B3LYP</b>   | def2-TZVP     | Ν            | 0.8837                                           | 0.7394          |
| <b>B3LYP</b>   | def2-TZVP     | Υ            | 0.9064                                           | 0.7990          |
| M06-2X         | 6-31G(d)      | Ν            | 0.9055                                           | 0.7920          |
| M06-2X         | 6-31G(d)      | Y            | 0.9441                                           | 0.8072          |
| M06-2X         | def2-SVP      | Ν            | 0.9005                                           | 0.7973          |
| M06-2X         | def2-SVP      | Υ            | 0.9380                                           | 0.8031          |
| M06-2X         | def2-TZVP     | Ν            | 0.9046                                           | 0.7763          |
| M06-2X         | def2-TZVP     | Y            | 0.9479                                           | 0.8440          |
| $\omega$ B97XD | 6-31G(d)      | Ν            | 0.9105                                           | 0.7682          |
| $\omega$ B97XD | 6-31G(d)      | Y            | 0.9468                                           | 0.7938          |
| $\omega$ B97XD | def2-SVP      | Ν            | 0.9052                                           | 0.7712          |
| $\omega$ B97XD | def2-SVP      | Y            | 0.9403                                           | 0.7973          |
| $\omega$ B97XD | def2-TZVP     | Ν            | 0.9109                                           | 0.7390          |
| $\omega$ B97XD | def2-TZVP     | Y            | 0.9466                                           | 0.7830          |

Table S2. The correlation results between the experimental fitted and calculated  $E_{S1}$  and  $f_{S1}$  in different computational methods, respectively.



Figure S2. The correlation between the experimental fitted and calculated  $E_{S1}$  using the functional of B3LYP with different basic sets in gas phase or in solvents.



Figure S3. The correlation between the experimental fitted and calculated  $E_{S1}$  using the functional of M06-2X with different basic sets in gas phase or in solvents.



Figure S4. The correlation between the experimental fitted and calculated  $E_{S1}$  using the functional of  $\omega$ B97XD with different basic sets in gas phase or in solvents.



Figure S5. The correlation between the experimental fitted and calculated  $f_{S1}$  using the functional of B3LYP with different basic sets in gas phase or in solvents.



Figure S6. The correlation between the experimental fitted and calculated  $f_{S1}$  using the functional of M06-2X with different basic sets in gas phase or in solvents.



Figure S7. The correlation between the experimental fitted and calculated  $f_{S1}$  using the functional of  $\omega$ B97XD with different basic sets in gas phase or in solvents.



Figure S8. The correlation between the experimental fitted  $f_0$  and calculated  $f_{S1}$  using M06-2X/def2-TZVP/PCM.



Figure S9. The correlation between the experimental fitted and calculated reorganization energy using (a) M06-2X/6-31G(d) and (b) M06-2X/def2-TZVP/PCM, highlighting the charged dyes.



Figure S10. The correlation between the experimental fitted and calculated (a)  $E_{S1}$  and (b) reorganization energy using M06-2X/def2-TZVP/PCM, highlighting the cyanine dyes.



Figure S11. The distribution of electron and hole of **rh6g**, **hidci**, **sty6**, **pry1**, and **c6** using M06-2X/def2-TZVP/PCM. The green region represents the electron distribution, and the blue region represents the hole distribution.

| Dyes  | Charge | Experimental λ<br>(eV) | M06-2X/                    | 6-31G(d)                  | M06-2X/def2-TZVP/PCM       |                           |  |
|-------|--------|------------------------|----------------------------|---------------------------|----------------------------|---------------------------|--|
|       |        |                        | <i>D</i> <sub>СТ</sub> (Å) | Calculated $\lambda$ (eV) | <i>D</i> <sub>СТ</sub> (Å) | Calculated $\lambda$ (eV) |  |
| rh6g  | +1     | 0.068                  | 0.844                      | 0.083                     | 0.818                      | 0.088                     |  |
| hidci | +1     | 0.072                  | 0.150                      | 0.065                     | 0.213                      | 0.070                     |  |
| sty6  | +1     | 0.205                  | 2.826                      | 0.05                      | 2.441                      | 0.182                     |  |
| pry1  | +1     | 0.195                  | 3.514                      | 0.046                     | 3.702                      | 0.329                     |  |
| c6    | 0      | 0.166                  | 0.927                      | 0.224                     | 1.719                      | 0.197                     |  |

Table S3. The distance between the centroid of the electron and hole of **rh6g**, **hidci**, **sty6**, **pry1**, and **c6** in the Frank Condon state.

Table S4. Calculated ZPE in the  $S_0$  and  $S_1$  state and their  $\Delta ZPE$  for sample molecules using M06-2X/def2-TZVP/PCM.

| Dyes  | ZPE <sub>so</sub> (eV) | ZPE <sub>s1</sub> (eV) | ΔZPE <sub>S1-S0</sub> (eV) |
|-------|------------------------|------------------------|----------------------------|
| 061   | 3.461                  | 3.385                  | -0.076                     |
| 068   | 4.029                  | 3.975                  | -0.054                     |
| c6    | 9.346                  | 9.277                  | -0.069                     |
| c102  | 8.266                  | 8.177                  | -0.089                     |
| daspi | 9.503                  | 9.447                  | -0.056                     |
| dqoci | 11.242                 | 11.192                 | -0.050                     |
| hidci | 14.106                 | 14.076                 | -0.030                     |
| pheox | 9.292                  | 9.245                  | -0.046                     |
| pry1  | 10.420                 | 10.382                 | -0.038                     |
| rh6g  | 14.693                 | 14.645                 | -0.048                     |
| rh110 | 8.526                  | 8.483                  | -0.043                     |
| sty6  | 12.270                 | 12.231                 | -0.039                     |



Figure S12. The correlation between the experimental fitted and calculated (a)  $E_{S1}$  and (c)  $f_{S1}$  using BLYP35/6-31G(d)/PCM for the optimization of ground state and M06-2X/6-31G(d)/PCM for the TDDFT calculations. The correlation between the experimental fitted and calculated (a)  $E_{S1}$  and (c)  $f_{S1}$  using M06-2X/6-31G(d)/PCM for the optimization of ground state and the TDDFT calculations. We selected 14 molecules as samples. The results from the two different systems show minimal differences; however, the computational cost of the optimization process using BLYP35/6-31G(d)/PCM is approximately half that of M06-2X/6-31G(d)/PCM.



Figure S13. The experimental absorption and fitting spectra of 061.



Figure S14. The experimental absorption and fitting spectra of 068.



Figure S15. The experimental absorption and fitting spectra of 077.



Figure S16. The experimental absorption and fitting spectra of 085.



Figure S17. The experimental absorption and fitting spectra of 099.



Figure S18. The experimental absorption and fitting spectra of bbo.



Figure S19. The experimental absorption and fitting spectra of bbq.



Figure S20. The experimental absorption and fitting spectra of bfl.



Figure S21. The experimental absorption and fitting spectra of bmq.



Figure S22. The experimental absorption and fitting spectra of bsf.



Figure S23. The experimental absorption and fitting spectra of c102.



Figure S24. The experimental absorption and fitting spectra of c152.



Figure S25. The experimental absorption and fitting spectra of c152a.



Figure S26. The experimental absorption and fitting spectra of c153.



Figure S27. The experimental absorption and fitting spectra of c2.



Figure S28. The experimental absorption and fitting spectra of c30.



Figure S29. The experimental absorption and fitting spectra of c307.



Figure S30. The experimental absorption and fitting spectra of c466.



Figure S31. The experimental absorption and fitting spectra of c47.



Figure S32. The experimental absorption and fitting spectra of c500.



Figure S33. The experimental absorption and fitting spectra of c510.



Figure S34. The experimental absorption and fitting spectra of c522.



Figure S35. The experimental absorption and fitting spectra of c6.



Figure S36. The experimental absorption and fitting spectra of c6h.



Figure S37. The experimental absorption and fitting spectra of c7.



Figure S38. The experimental absorption and fitting spectra of cs3.



Figure S39. The experimental absorption and fitting spectra of cs7.



Figure S40. The experimental absorption and fitting spectra of dasbt.



Figure S41. The experimental absorption and fitting spectra of daspi.



Figure S42. The experimental absorption and fitting spectra of dci-2.



Figure S43. The experimental absorption and fitting spectra of ddi.



Figure S44. The experimental absorption and fitting spectra of dmetc.



Figure S45. The experimental absorption and fitting spectra of dmq.



Figure S46. The experimental absorption and fitting spectra of dodci.



Figure S47. The experimental absorption and fitting spectra of dps.



Figure S48. The experimental absorption and fitting spectra of dqoci.



Figure S49. The experimental absorption and fitting spectra of f7ga.



Figure S50. The experimental absorption and fitting spectra of fl27.



Figure S51. The experimental absorption and fitting spectra of hditc.



Figure S52. The experimental absorption and fitting spectra of hidci.



Figure S53. The experimental absorption and fitting spectra of hitci.



Figure S54. The experimental absorption and fitting spectra of ir125.



Figure S55. The experimental absorption and fitting spectra of ir144.



Figure S56. The experimental absorption and fitting spectra of pheox.



Figure S57. The experimental absorption and fitting spectra of pqp.



Figure S58. The experimental absorption and fitting spectra of ptp.



Figure S59. The experimental absorption and fitting spectra of pyr1.



Figure S60. The experimental absorption and fitting spectra of pyr2.



Figure S61. The experimental absorption and fitting spectra of pyr4.



Figure S62. The experimental absorption and fitting spectra of q390.



Figure S63. The experimental absorption and fitting spectra of qui.



Figure S64. The experimental absorption and fitting spectra of rh101.



Figure S65. The experimental absorption and fitting spectra of rh110.



Figure S66. The experimental absorption and fitting spectra of rh123.



Figure S67. The experimental absorption and fitting spectra of rh19a.



Figure S68. The experimental absorption and fitting spectra of rh6g.



Figure S69. The experimental absorption and fitting spectra of rh700.



Figure S70. The experimental absorption and fitting spectra of rhb.



Figure S71. The experimental absorption and fitting spectra of sr101.



Figure S72. The experimental absorption and fitting spectra of srhb.



Figure S73. The experimental absorption and fitting spectra of sty11.



Figure S74. The experimental absorption and fitting spectra of sty14.



Figure S75. The experimental absorption and fitting spectra of sty15.



Figure S76. The experimental absorption and fitting spectra of sty20.



Figure S77. The experimental absorption and fitting spectra of sty6.



Figure S78. The experimental absorption and fitting spectra of sty8.



Figure S79. The experimental absorption and fitting spectra of sty9.



Figure S80. The experimental absorption and fitting spectra of tbs.



Figure S81. The experimental absorption and fitting spectra of tmi.



Figure S82. The experimental absorption and fitting spectra of tmq.