Supporting Information

A polymorphic SrGa₂O₄:Eu²⁺ red phosphor for warm illumination and operando visualization of H₂O₂ catalytic reaction

Tao Hu^{a,c*}, Zelong Jiang^{a,b}, Hong Yang^a, Wei Lv^a, Ruijing Fu^{a,c}, Qingguang Zeng^{a,c}, Xiaodong Yi^d, Yan Gao^{a*}

^aSchool of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China.

^b2495 Advanced Ceramic Materials (Guangdong) Co., LTD. Foshan 528137, Guangdong Province, P. R. China.

^cInstitute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, P. R. China.

^dCAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002, China

E-mail: hutaowyu@sina.com; gaoyan_chn@sina.com

Figure S1 XRD refinements on the (a) β -SrGa₂O₄:Eu²⁺ synthesized at 1000 °C and (b) γ -SrGa₂O₄:Eu²⁺ synthesized at 1200 °C

Sample	Space group	Cell parameters(Å,°),	$R_p(\%),$
		Cell volume(Å ³)	$R_{wp}(\%)$
γ -SrGa $_2O_4$:Eu $^{2+}$ β -SrGa $_2O_4$:Eu $^{2+}$	P21/n P21/c	<i>a</i> = 8.10924	<u> </u>
		<i>b</i> = 10.75332	
		<i>c</i> =9.04985	5.60
		V=788.872717	3.94
		$\alpha = \gamma = 90$	
		$\beta = 91.5413$ a = 8.38204	
		<i>b</i> = 8.99710	
		c = 10.68064	12.76
		V=803.597830	7.87
		$\alpha = \gamma = 90$	
		$\beta = 93.9076$	

Table S1 The refined structure parameters of β -SrGa₂O₄:Eu²⁺ and γ -SrGa₂O₄:Eu²⁺ red phosphor

Figure S2 (a) PLE and PL spectra of β-SrGa₂O₄:Eu²⁺ phosphor measured at temperature 77 K, the inset gives the enlarge view of the PL spectra. (b) low temperature PL decay curves of β-SrGa₂O₄:Eu²⁺ phosphor by monitoring 580 nm and 680 nm emission

Figure S3 The fitted activation energy for the thermal quenching of β -SrGa₂O₄:Eu²⁺ red phosphor.

The activation energy ΔE_a for the thermal quenching of the Eu²⁺ emission was calculated by the following Arrhenius equation:

$$I_T / I_0 = \frac{1}{1 + A \exp\left(-\frac{\Delta E_a}{kT}\right)}$$

Where I_0 is the initial intensity, I_T is the intensity at given temperature T, A is constant, and k is the Boltzmann constant (8.62×10⁻⁵ eV/K). The thermal activation energy ΔE_a for the β-SrGa₂O₄:Eu²⁺ red phosphor was calculated to be 0.30 eV.

Figure S4 High-resolution Eu 3d XPS spectra of (a) β -SrGa₂O₄:Eu²⁺ phosphor, and (b) the compound collected after immersing β -SrGa₂O₄:Eu²⁺ phosphor in MnO₂@H₂O₂ solution for 3h.