SUPPORTING INFORMATION

In situ preparation of highly luminescent Sb³⁺/Mn²⁺ codoped Cs₂KInCl₆ lead-free double perovskite in PVDF matrix and application to white light emitting diode and anti-counterfeiting

Yongrun Dong,^a Wen Li,^a Tao Huang,^a Shuaigang Ge,^b Linghang Kong,^a Chuang Ning,^a Zequan Li,*^a Wei Gao*^a and Bingsuo Zou*^a

^aState Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
^bSchool of Physical Science and Technology, Guangxi University, Nanning 530004, China.

*Email: zequan@gxu.edu.cn (Zequan Li), galaxy@gxu.edu.cn (Wei Gao), zoubs@gxu.edu.cn (Bingsuo Zou)

Positio	Peak1	Peak1 PL	Peak2	Peak2 PL	FWHM	CIE
n	wavelength	intensity	Wavelength	intensity		
	(nm)		(nm)			
1	501	906059.1	633	702325.1	230.6416	(0.3357, 0.3833)
2	500	943006.4	634	724365.4	232.7982	(0.3333, 0.3800)
3	501	953537.7	634	775487.4	231.0202	(0.3396, 0.3822)
4	501	1008074.3	634	835016.5	229.9310	(0.3415, 0.3832)
5	501	1028279.9	634	862647.2	232.2089	(0.3424, 0.3825)
6	501	1054715.6	633	839332.0	230.0910	(0.3380, 0.3830)
7	500	1066223.9	634	887090.8	232.7456	(0.3399, 0.3779)
8	500	1070569.8	634	852467.1	231.8963	(0.3360, 0.3793)
9	500	1071127.5	633	875282.5	231.1717	(0.3388, 0.3801)
10	500	1075901.7	633	886219.9	234.4710	(0.3398, 0.3801)
11	501	1096263.9	633	881045.3	230.9752	(0.3388, 0.3830)
12	501	1096271.3	632	932813.7	232.2579	(0.3441, 0.3833)
13	501	1104425.1	632	898658.9	232.8296	(0.3390, 0.3806)
14	502	1137986.1	634	952250.0	232.7614	(0.3438, 0.3849)
15	501	1142087.1	632	903584.3	230.7596	(0.3379, 0.3834)
16	501	1181506.1	634	981440.0	232.5075	(0.3395, 0.3791)

Table S1. The positions, PL intensities, FWHM and CIE coordinates of the dual peaks in different regions of the $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1.

Table S2. Weight percentage and atomic percentage of partial relevant elements in $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1.

Element	Weight %	Atomic %
F (K)	85.93	94.92
Cs (L)	4.00	0.63
K (K)	0.83	0.45
In (L)	2.17	0.40
Cl (K)	5.08	3.01
Sb (L)	0.80	0.14
Mn (K)	1.18	0.45

Mn to Sb ratio	A ₁ (%)	τ_1 (ms)	A ₂ (%)	τ ₂ (ms)	$ au_{ave}$ (ms)
8:1	0.248	2.558	0.721	15.813	15.114
12:1	0.265	1.062	0.651	14.522	14.134
16:1	0.294	3.689	0.621	16.155	14.941
20:1	0.388	1.310	0.533	14.759	13.944

Table S3. Bi-exponential fitting results of decay curves for Sb^{3+}/Mn^{2+} co-doped $Cs_2KInCl_6/PVDF$ composite films

Table S4. Comparison of optical properties of the other perovskite/polymer composite

 films by in situ stratety.

Composite film	Color	PLQY (%)	Ref
MAPbBr ₃ /PVDF	green	94.6	1
CsPbBr ₃ /PVDF	green	65	2
Mn ²⁺ doped MAPbCl ₃ /PVDF	red	22.8	3
MAPbBr ₃ /pHEA	green	11	4
MAPbBr ₃ /PAN	green	71	5
MAPbBr ₃ /PVA	green	95.3	6
Cd ²⁺ doped FAPbBr ₃ /PVDF	green	74.4	7
Cs ₃ Cu ₂ I ₅ /PMMA	blue	64	8
Cs2Na0.8Ag0.2BiCl6/PMMA	orange	21.52	9
Sb ³⁺ /Mn ²⁺ co-doped	white	86.98	This work
Cs ₂ KInCl ₆ /PVDF			

Fig. S1 The photograph of $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1 obtained by direct heating at 100°C under sunlight.

Fig. S2 SEM image of Cs₂KInCl₆/PVDF composite film with Mn to Sb ratio of 16:1 obtained by direct heating at 100°C.

Fig. S3 Transmission spectrum of pure PVDF film and composite films.

Fig. S4 PL spectra of different regions of the $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1.

Fig. S5 (a) Raman spectrum of pure PVDF film, undoped, Sb³⁺ doped and co-doped Cs₂KInCl₆/PVDF composite films. (b) Raman spectrum of pure PVDF film, undoped, Sb³⁺ doped and co-doped Cs₂KInCl₆/PVDF composite films at 50 and 400 cm⁻¹.

Fig. S6 SEM image of pure PVDF film.

Fig. S7 PLE spectra of $Cs_2KInCl_6/PVDF$ composite films with single Sb^{3+} doped and co-doped.

Fig. S8 (a) and (b). Absorption spectrum of pure PVDF film and $Cs_2KInCl_6/PVDF$ composite film.

Fig. S9 (a), (b) and (c). PL spectrum of pure PVDF film, $Cs_2KInCl_6/PVDF$ composite film and Mn^{2+} doped $Cs_2KInCl_6/PVDF$ composite film.

Fig. S10 PLQY of $Cs_2KInCl_6/PVDF$ composite films with different Sb content in precursor.

Fig. S11 PLQY of 0.5%Sb: Cs₂KInCl₆/PVDF composite film.

Fig. S12 PL intensity of $Cs_2KInCl_6/PVDF$ composite films with different Mn/Sb feeding ratio.

Fig. S13 PLQY of Cs₂KInCl₆/PVDF composite film with Mn to Sb ratio of 16:1.

Fig. S14 (a) Pseudo-color maps of temperature-dependent PL spectra of the Sb³⁺ doped Cs2KInCl6/PVDF composite film (λ_{ex} =320nm). And its corresponding (b) PL intensity versus 1/T and fitting results. (c) Fwhm versus temperature and the fitting results. (d) Schematic diagram of photophysical processes.

Fig. S15 (a) Stability of $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1 under heating. (b) Thermogravimetric analysis thermogram of $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1.

Fig. S16 Stability of $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1 under illumination.

Fig. S17 Variable excitation spectrum of $Cs_2KInCl_6/PVDF$ composite film with Mn to Sb ratio of 16:1

References

1. Q. C. Zhou, Z. L. Bai, W. G. Lu, Y. T. Wang, B. S. Zou and H. Z. Zhong, *Adv. Mater.*, 2016, **28**, 9163-+.

2. P. T. Liang, P. Zhang, A. Z. Pan, K. Yan, Y. S. Zhu, M. Y. Yang and L. He, *ACS Appl. Mater. Interfaces*, 2019, **11**, 22786-22793.

3. X. W. Bai, L. Q. Meng, N. Zhou, J. J. Zheng, X. F. Yu, P. K. Chu, J. J. Xiao, B. S. Zou and J. Li, *J. Colloid Interface Sci.*, 2022, **606**, 1163-1169.

4. D. R. Wang, Y. Q. Bao, J. J. Cui, L. F. Chao, L. Gu, W. Hui, Y. Shen, B. Zhang, Y. H. Chen and L. Song, *Adv. Funct. Mater.*, 2023, **33**, 10.

5. R. Cheng, Z. B. Liang, L. L. Zhu, H. Li, Y. Zhang, C. F. Wang and S. Chen, *Angew. Chem.-Int. Edit.*, 2022, **61**, 11.

6. H. Zhang, S. Cao, J. L. Jiang, Q. Sun, J. Z. Liu, D. L. Ou, J. L. Zhao, W. Y. Yang,
H. Fu and J. J. Zheng, *Chem. Eng. J.*, 2023, 462, 10.

7. J. Z. Liu, H. Fu, Z. T. Du, D. L. Ou, S. X. Li, Q. C. Chen, W. Y. Yang, J. L. Zhao and J. J. Zheng, *J. Mater. Chem. C*, 2022, **10**, 17512-17520.

 W. Zhou, X. D. Zhu, J. Yu, D. D. Mou, H. X. Li, L. Y. Kong, T. C. Lang, L. L. Peng,
 W. B. Chen, X. H. Xu and B. T. Liu, *ACS Appl. Mater. Interfaces*, 2023, 15, 38741-38749.

9. J. D. Shi, M. Q. Wang, C. Zhang, J. N. Wang, Y. Zhou, Y. L. Xu, N. V. Gaponenko and A. S. Bhatti, *ACS Appl. Mater. Interfaces*, 2023, **15**, 12383-12392.