Supporting information

Metallopolymer-Based Block Copolymers for Perfluorinated Substances (PFAS) and Ion Removal

Till Rittner,^a Sebastian Pusse,^a Blandine Boßmann,^a Kevin Staudt,^b Aaron Haben,^c Ralf Kautenburger,^c Horst P. Beck,^d and Markus Gallei^{a,e*}

Directory

1Polymers and Nomenclature	2
2Proton Nuclear Resonance Spectroscopy (¹ H-NMR) of prepared Polymers	3
3Size Exclusion Chromatography (SEC) of prepared Polymers	6
4Photographs of Prepared Membranes and SEM Images of the Membrane Surface	8
5Additional Permeance Experiments in Simulated Seawater	10
6Cyclic Voltammetry Data	11
7Thermogravimetric Analysis Data and Ceramic in Synthetic Air	12
8Ceramic Composition and Mapping via Energy-dispersive X-ray Spectroscopy (EDS)	13

^{a.} Polymer Chemistry, Saarland University, Campus C4 2, 66123, Saarbrücken, Germany

^{b.} Physical Chemistry, Saarland University, Campus B2 2, 66123 Saarbrücken, Germany

^{c.} Inorganic Solid State Chemistry, Elemental analysis group, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany

^{d.} Inorganic and Analytical Chemistry, Saarland University, Campus Dudweiler, 66125, Beethovenstrasse Zeile 4

e. Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123, Saarbrücken, Germany

1.-Polymers and Nomenclature

Table S1: Summarized molar masses and block segment content (weight content (wt.%), P_{XX wt%}) of PtBAEMA and PCoEtBAEMA) of synthesized polymers calculated by SEC measurements and ¹H NMR spectroscopy.

Sample	Polymer	M_{n, NMR} a)	Đ ^{b)}	wt.% _{PCoEtBAEMA(UV-Vis)} ^{c)}
P _{6.2}	PS ₇₉₇ -b-(PCoEtBAEMA ₇ -co-PMMA ₈)	87.8	1.08	6.2
P _{20.1}	PS ₇₇₃ -b-(PCoEtBAEMA ₃₁ -co-PMMA ₁₂)	98.7	1.08	20.1
P _{27.5}	PS ₉₀₈ -b-(PCoEtBAEMA ₆₅ -co-PMMA ₂₈)	134.4	1.10	27.5
P _{31.1}	PS ₇₇₃ -b-(PCoEtBAEMA ₅₇ -co-PMMA ₂₇)	114.4	1.11	31.1
P _{33.3}	PS ₈₇₄ -b-(PCoEtBAEMA ₈₈ -co-PMMA ₄₈)	143.3	1.10	33.3
P _{40.1}	PS ₇₇₆₋ -b-(PCoEtBAEMA ₈₀ -co-PMMA ₃₀)	127.0	1.10	40.1
P _{92.6}	PCoEtBAEMA ₃₈₇ -b-PMMA ₁₃₃	225.5	1.07	92.6 ^{d)}

^{a)} PS molar masses were determined by SEC in THF (kg mol⁻¹, PS standards) and used to calculate NMR values for the corresponding block copolymers; ^{b)}Dispersity of polymers prior to functionalization measured by SEC in DMF with styrene standard ^{c)} Weight content of PCoE*t*BAEMA in % calculated by UV-Vis spectroscopy in THF at 489 nm ^{d)} Weight content determined by ¹H NMR data of the block copolymers.

Polymer synthesis and data:

A detailed description of the synthetic and analytical procedure, including the composition calculation, can be found in the supporting information of our previous work under DOI:10.1039/D4PY00780H. All newly synthesized polymers for this work ($P_{27.5}$, $P_{33.3}$, and $P_{92.6}$) were analyzed accordingly, and relevant data (NMR and SEC) is presented in the following.

Figure S2: ¹H-NMR (500 MHz, CDCl₃/CDCN, δ in ppm) of PS₉₀₈-*b*-(PCoE*t*BAEMA₆₅-*co*-PMMA₂₈)

Figure S3: ¹H-NMR (500 MHz, CDCl₃, δ in ppm) of PS₈₇₄-*b*-(PtBAEMA₈₈-*co*-PMMA₄₈)

Figure S4: ¹H-NMR (500 MHz, CDCl₃/CDCN, δ in ppm) of PS₈₇₄-*b*-(PCoE*t*BAEMA₈₈-*co*-PMMA₄₈)

Figure S6: ¹H-NMR (500 MHz, CDCl₃/CDCN, δ in ppm) of PCoEtBAEMA₃₈₇-b-PMMA₁₃₃

3.-Size Exclusion Chromatography (SEC) of prepared Polymers

Figure S7: SEC (THF, polystyrene standard) of PS_{908} and PS_{874} first polystyrene block for calculation

Figure S8: SEC (DMF, PMMA standard) of PS₉₀₈ and PS₉₀₈-b-(PtBAEMA₆₅-co-PMMA₂₈)

Figure S9: SEC (DMF, PMMA standard) of PS₈₇₄ and PS₈₇₄-b-(PtBAEMA₈₈-co-PMMA₄₈)

Figure S10: SEC (DMF, PMMA standard) of P(tBAEMA₈₈-co-MMA₄₈)

Figure S11: Images of prepared membranes from NMP solution with increasing amount of cobaltocenium containing PtBAEMA in weight percent (Pxx wt%) and scanning electron microscopy images of P_{92.6}.

Figure S12: Scanning electron microscopy (SEM) images of membranes from NMP solution with increasing amount of cobaltocenium containing PtBAEMA in weight percent (P_{xx} wt%)

Figure S13: Image of large membrane formed from a DMAc solution of P_{33.3} and respecting scanning electron microscopy images of the surface and crosssection.

5.-Additional Permeance Experiments in Simulated Seawater

Figure 15: Water flux experiment with a sodium chloride concentration of 3.5 wt% and a pressure of 0.4 bar

6.-Cyclic Voltammetry Data

Figure S16: Cyclic voltammetry (CV) investigation of cobaltocenium containing BCP- films in acetonitrile with 0.1 M TBAPF6 at a scan rate of 200 mV s⁻¹, Pt working, and Ag/AgCl reference electrode containing increasing cobaltocenium amounts (P_{xx} wt%): a) P_{6.2}. b) P_{20.1}. c) P_{31.1}. d) P_{40.1}.

7.-Thermogravimetric Analysis Data and Ceramic in Synthetic Air

Figure S18: Scanning electron microscopy (SEM) images of the ceramic membrane after calcination in synthetic air up to 800°C with 10 K min⁻¹ of PFAS (M_{PFAS}), sodium chromate ($M_{Chromate}$) and lead nitrate (M_{Lead}) retention experiments.

8.-Ceramic Composition and Mapping via Energy-dispersive X-ray Spectroscopy (EDS)

Table S2: Summary of elemental composition of membrane ceramic formed after calcination in nitrogen and synAir up to 800°C with 10 K min1 determined by energy-dispersive X-ray spectroscopy (EDS)

Sample	Atmosphere ^{a)}	Ceramic yield / wt%	C / wt%	0 / wt%	P / wt%	Co / wt%	Cr / wt%
M PFOA. N2	nitrogen	7.9	56.2	19.0	8.3	16.5	0
M _{PFOA. SynAir}	synAir	[0.47]	15.5	44.0	14.8	25.8	0
M _{Lead. N2}	nitrogen	6.9	65.9	19.4	4.8	9.9	0
M _{Lead. SynAir}	synAir	2.8	16.3	34.9	14.7	34.1	0
M _{Chromate. N2}	nitrogen	7.9	69.9	18.8	3.1	6.7	1.5
M _{Chromate} . SynAir	synAir	2.7	12.3	36.5	14.2	31.4	3.2

Figure S19: Energy-dispersive X-ray spectroscopy (EDS) images of respective elements found for M_{PFOS} made in a nitrogen atmosphere

^{a)}synAir is a mixture of nitrogen and oxygen (80/20).

Figure S20: Energy-dispersive X-ray spectroscopy (EDS) images of respective elements found for $M_{\rm PFOS}$ made in an oxidative atmosphere

Figure S23: Energy-dispersive X-ray spectroscopy (EDS) images of respective elements found for $M_{\mbox{Chromate}}$ made in a nitrogen atmosphere

Figure S24: Energy-dispersive X-ray spectroscopy (EDS) images of respective elements found for M_{Chromate} made in an oxidative atmosphere