## **Supporting information**

## Research on High Thermal Conductivity PPENK/PVP modified BN Electrospinning Hot-pressed Multifunctional Nanocomposite Films

Jingyi Wang <sup>a</sup>, Lishuai Zong <sup>a</sup>, Yuhang Wang <sup>a</sup>, Zichun Ding <sup>a</sup>, Runze Liu <sup>a</sup>, Jinyan Wang <sup>a</sup>, Xigao Jian <sup>a</sup> and Chenghao Wang <sup>a</sup>, \*

<sup>a</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Department of Polymer Science and Engineering, Liaoning Province Engineering Research Centre of High Performance Resins, Dalian, 116024, China.

\* Corresponding author e-mail: Wangchh@dlut.edu.cn



Fig. S1 (a) SEM, (b)TEM, (c) AFM images of BN and (d) the height-curve of BN corresponding

to (c).



Fig. S2 TGA and DTG curves of PVP

Table S1. XPS peak proportions of BN before and after PVP modification

| Samples | C (at.%) | N (at.%) | O (at.%) | B (at.%) |
|---------|----------|----------|----------|----------|
| BN      | 13.24    | 35.45    | 3.82     | 47.48    |
| PVP-BN  | 20.52    | 32.54    | 4.21     | 42.73    |



Fig. S3 SEM cross-section images of the PPENK/MBN-12 single fiber film.



**Fig. S4** SEM cross-section images of the PPENK/MBN-3(a), PPENK/MBN-6(b), PPENK/MBN-9(c) composite films.



Fig. S5 SEM cross section images of PPENK/BN (a) and PPENK/MBN (b).



Fig. S6 In-plane and Out-of-plane thermal conductivity of PPENK/BN-6 and PPENK/MBN-6 composite films



Fig. S7 In-plane and Out-of-plane thermal conductivities of PPENK/MBN Blending film(40wt%) and PPENK/MBN-12 (39.2wt%) composite films



Fig. S8 Stress-strain curves of PPENK/BN-6 and PPENK/MBN-6 composite films.

| Materials    | BN (wt%) | PVP-BN (wt%) | PPENK (wt%) |
|--------------|----------|--------------|-------------|
| PPENK        | -        | -            | 100         |
| PPENK/MBN-3  | 9.3      | 9.5          | 90.5        |
| PPENK/MBN-6  | 16.4     | 16.7         | 83.3        |
| PPENK/MBN-9  | 29.1     | 29.7         | 70.3        |
| PPENK/MBN-12 | 38.4     | 39.2         | 60.8        |

Table S2. The Composition and content of PVP-BN/PPENK composite films.

**Table S3.** Comparison of specific Thermal Conductivity (in-plane and out of-plane)

 between our sample with BN/polymer composites films reported in the

|                |                            | merature.                                                                    |                                                                                  |           |
|----------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------|
| Composites     | Filler<br>Content<br>(wt%) | In-plane<br>thermal<br>conductivity<br>(W·m <sup>-1</sup> ·K <sup>-1</sup> ) | Out of-plane<br>thermal<br>conductivity<br>(W·m <sup>-1</sup> ·K <sup>-1</sup> ) | Reference |
| PPENK/MBN-12   | 39.2                       | 9.96                                                                         | 1.13                                                                             | -         |
| EP/BNNS@IL     | 45                         | 8.3                                                                          | 0.8                                                                              | [1]       |
| PVA/BTx        | 30                         | 8.54                                                                         | -                                                                                | [2]       |
| PI/BNNS@PAA    | 10                         | 2.11                                                                         | 0.371                                                                            | [3]       |
| TPU/MWCNT@BNNS | 41.7                       | 9.99                                                                         | 1.17                                                                             | [4]       |
| PA6/mBN/mSiC   | 20                         | 1.31                                                                         | 0.35                                                                             | [5]       |
| AgNWs@BNNS/ANF | 50                         | 10.36                                                                        | 0.93                                                                             | [6]       |
| EP/BNNS@AgNPs  | 20                         | 1.13                                                                         | -                                                                                | [7]       |
| BNNS@Al2O3/SR  | 30                         | 2.78                                                                         | 0.84                                                                             | [8]       |

literature.

PPENK: poly(phthalazinone ether nitrile ketone); MBN: modified boron nitride; BNNS: boron nitride nanosheets; EP: epoxy; IL: ionic liquid; PVA: poly(vinyl alcohol);  $BT_x$ : boron nitride nanosheets/ $Ti_3C_2T_x$  MXene; PI: polyimide; PAA: polyamide acid; TPU: Thermoplastic polyurethane; MWCNT: multi-walled carbon nanotubes; PA6: Polyamide; mBN: modified boron nitride; mSiC: modified silicon carbide; AgNWs: silver nanowires; AgNPs: silver nanoparticles;

Al<sub>2</sub>O<sub>3</sub>: alumina oxide; SR: silicone rubber.

## References

[1] Han, G.; Zhang, D.; Kong, C.; et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting [J]. Chemical Engineering Journal, 2022, 437, 135482.

[2] Sun H, Bao Q, Chen G, et al. Highly thermal conductive and flame retardant poly(vinyl alcohol) film with synergistic alignments of boron nitride nanosheets/ $Ti_3C_2T_x$  MXene for thermal interface materials [J]. Polymer, 2023, 283, 126277.

[3] Li, C-Y.; Gu, T.; Sun, D-X.; et al. High performances of polyimide/boron nitride nanosheets composites via integrative interfacial decoration strategy [J]. Composites Science and Technology, 2022, 229, 109681.

[4] Zhang, Y.; Zhao, Z.; Chen, M.; Wu, H.; Guo, S.; Qiu, J. Constructing interconnected network of MWCNT and BNNS in electrospun TPU films: Achieving excellent thermal conduction yet electrical insulation properties. Carbon, 2024, 218, 118691.

[5] Chen, J.; Zhu, J.; Pan, Y.; et al. Fabrication of wear-resistant PA6 composites with superior thermal conductivity and mechanical properties via constructing highly oriented hybrid network of SiC-packed BN platelets [J]. Journal of Materials Science & Technology, 2023, 146: 200-210.

[6] Han, Y.; Ruan, K.; He, X.; Tang, Y.; Guo, H.; Guo, Y.; Qiu, H.; Gu, J. Highly Thermally Conductive Aramid Nanofiber Composite Films with Synchronous Visible/Infrared Camouflages and Information Encryption. Angew Chem Int Ed Engl, 2024, 63 (17), e202401538.

[7] Liu, D.; Chi, H.; Ma, C.; Song, M.; Zhang, P.; Dai, P. Improving in-plane and out-of-plane thermal conductivity of polyimide/boron nitride film with reduced graphene oxide by a moving magnetic field induction. Composites Science and Technology, 2022, 220, 109292.

[8] Ruan, K.; Yan, H.; Zhang, S.; Shi, X.; Guo, Y.; Gu, J. In-situ fabrication of hetero-structured fillers to significantly enhance thermal conductivities of silicone rubber composite films. Composites Science and Technology, 2021, 210, 108799.