Supplementary Information

Emergence of heavy-fermion behavior and distorted square nets in partially vacancy-ordered $Y_4Fe_xGe_8$ (1.0 $\leq x \leq$ 1.5)

Hengdi Zhao,¹ Xiuquan Zhou,¹ Mohammad Usman,¹ Ramakanta Chapai,¹ Lei Yu,² Jianguo Wen,² Hyowon Park,^{1,3} Alexios P. Douvalis,⁴ Patricia E. Meza,⁵ Yu-Sheng Chen,⁶ Ulrich Welp,¹ Stephan Rosenkranz,¹ Duck-Young Chung,¹ and Mercouri G. Kanatzidis*^{1,7}

¹Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
²Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
³Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
⁴Department of Physics, University Ioannina, Ioannina, 45110, Greece
⁵Department of Material Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
⁶NSF's ChemMatCARS, the University of Chicago, 9700 South Cass Avenue, Lemont, Illinois 60439, USA
⁷Department of Chemistry, Northwestern University, Evanston, Illinois 604208, USA

*corresponding author. <u>m-kanatzidis@northwestern.edu</u>

Figure S1. Elemental analysis for sample $Y_4Fe_xGe_8$ using EDS. It gives a Y:Fe:Ge ratio of about 4:1.5:8, very close to our single crystal refinement (x = 1.44) as shown in **Table 1**.

The CeNiSi₂-type structure, which crystallizes in the orthorhombic *Cmcm* space group, restricts both the Ge-Ge square net to be perfect and the Fe-site to be centered (**Fig.S2a**). As observed in the Tb₄FeGe₈,¹ with only the Ge square-net distortion enabled, the Ge square-net distorts from rhombi to irregular quadrilaterals resulting in four distinct Ge-Ge distances for each Ge, breaking all mirror and glide planes of the space group *Cmcm* and thus lowering the symmetry down to monoclinic space group $P2_1/n$ (**Fig.S2b**). Note the Fe-site is still centered under this symmetry (**Fig.S2b**). By further allowing the Fe-site to move off-centered, as we have observed in the titled compound as well as in the Y₄RuGe₈,² the symmetry get further reduced down to triclinic space group *P-1* (**Fig.S2c**).

Figure S2. Schematic of the evolution of space group as a result of both Ge-Ge square net distortions and the Fe-site off-centering, with **a**) $Y_4Fe_xGe_8$, Orthorhombic space group *Cmcm*; **b**) Tb₄FeGe₈, monoclinic, space group *P2*₁/*n* and **c**) $Y_4Fe_xGe_8$, triclinic space group *P-1*.

Figure S3. Crystal structures of $Y_4Fe_xGe_8$, crystallizing in a CeNiSi₂-type structure (*Cmcm* space group) viewing at **a**) the *ab*-plane and **b**) the *bc*-plane with FeGe₄ tetrahedron.

Figure S4. X-ray photoelectron spectroscopy (XPS) measurements of Y₄Fe_{1.44}Ge₈

Photoemission yield spectroscopy in air

PYSA measurements were taken on a Riken-Keiki AC-2 spectrometer. Thin film samples were scanned by tunable monochromatic ultraviolet light (UV, 4.2-6.2 eV) under dry air, and emitted photoelectron counts were measured at each excitation energy using an accelerating voltage of 2980 V with a counting time of ten seconds and a step size of 0.1 eV. A detector dead-time of

Figure S5. Photoemission yield spectroscopy in air (PYSA) measurements of $Y_4Fe_xGe_8$ performed with freshly ground powder.

5.6 ms was used, allowing a maximum counting rate of 1785/s. Maximum signal-to-noise ratio was obtained by setting the UV intensity to 300 nW for crystals and 200 nW for power, and a quantity-of-light correction was used to account for variations in UV lamp intensity across the energy range. First ionization energies of $Y_4Fe_xGe_8$ samples were determined by plotting the third root of photoelectron count rate against excitation energy, and a linear regression was used to determine the onset energy of above-baseline photoelectron flux. The negative of this onset energy was used as an approximation of the energetic position of the valence band maximum in the sample.

PYSA measurements performed on single crystals had apparent ionization energy of 5.47 eV, but freshly ground powder showed a shallower ionization energy of 4.85 eV. Re-measuring the same powder sample after 5 days in air yielded an apparent ionization energy of 5.11 eV. These values are consistent with surface oxidization of the starting crystals and the air-exposed powder. However, the ionization energy of the freshly ground powder (4.85 eV) is likely the closest approximation of the true work function of Y4FeGe8.

Magnetic Susceptibility Data for Y₄Fe_xGe₈ samples synthesized via Direct-Combination Method

Figure S6. Zero-Field-Cooled (ZFC) volume magnetic susceptibility of selected Y4FexGe8 synthesized via direct-combination method with no indium/tin involved.

Figure S7. Typical size of single crystals $Y_4Fe_xGe_8$ ($1.0 \le x \le 1.5$) synthesized with the metal flux method.

Table S1. Single crystal diffraction data of $Y_4Fe_{1.44}Ge_8$ in the space group *Cmcm* (column 2 in Table 1) collected using a laboratory single crystal x-ray diffractometer.

Empirical formula	$Fe_{1.44}Ge_8Y_4$
Formula weight	1016.78
Temperature/K	296.15
Crystal system	orthorhombic
Space group	Cmcm
a/Å	4.1384(2)
b/Å	15.8468(8)
c/Å	4.0178(2)
Volume/Å ³	263.49(2)
Z	1
$\rho_{calc}g/cm^3$	6.408
μ/mm^{-1}	46.023
F(000)	449.0
Radiation	MoKα ($\lambda = 0.71073$ Å)
2Θ range for data collection/°	5.142 to 60.956
Index ranges	$-5 \le h \le 5, -22 \le k \le 22, -5 \le l \le 5$
Reflections collected	4690
Independent reflections	255 [$R_{int} = 0.0298$, $R_{sigma} = 0.0101$]
Data/restraints/parameters	255/0/19
Goodness-of-fit on F ²	1.135
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0138, wR_2 = 0.0293$
Final R indexes [all data]	$R_1 = 0.0150, wR_2 = 0.0298$
Largest diff. peak/hole / e Å-3	0.96/-0.76

$$\begin{split} R = & \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR = \{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4)] \}^{1/2} \ \text{and} \ w= 1/[\sigma^2(Fo^2) + (\ 0.0319P)^2 + 0.46P] \ \text{where} \ P = & (Fo^2 + 2Fc^2)/3 \end{split}$$

Table S1 extended. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic

Displacement Parameters (Å²×10³). U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Y001	5000	3972.8(2)	7500	7.91(12)
Ge00	0	4476.6(3)	2500	10.81(13)
Gel	0	2517.5(3)	-2500	27.37(16)
Fe04	0	3030.8(10)	2500	13.0(5)

Table S1 extended. Anisotropic Displacement Parameters (Å²×10³). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

	1				
U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
7.11(18)	7.33(18)	9.30(19)	0	0	0
6.6(2)	19.0(2)	6.8(2)	0	0	0
25.9(3)	17.3(3)	39.0(3)	0	0	0
14.8(8)	7.3(8)	16.7(9)	0	0	0
	U ₁₁ 7.11(18) 6.6(2) 25.9(3) 14.8(8)	$\begin{array}{ccc} U_{11} & U_{22} \\ 7.11(18) & 7.33(18) \\ 6.6(2) & 19.0(2) \\ 25.9(3) & 17.3(3) \\ 14.8(8) & 7.3(8) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S1	extended.	Bond Lengths.
----------	-----------	---------------

Atom Atom	Length/Å	Atom	Atom	Length/Å
Y001 Ge00	2.99243(19)	Ge00	Ge00 ²	2.6052(6)
Y001 Ge001	3.2123(4)	Ge00	Ge00 ⁸	2.6052(6)
Y001 Ge00 ²	3.2123(4)	Ge00	Fe04	2.2911(15)
Y001 Ge00 ³	2.99244(19)	Gel	Ge1 ⁹	2.88450(10)
Y001 Ge00 ⁴	2.99244(19)	Gel	Ge1 ¹⁰	2.88450(10)
Y001 Ge00 ⁵	2.99244(18)	Gel	Ge1 ¹¹	2.88450(10)
Y001 Ge16	3.1005(5)	Gel	Ge1 ⁶	2.88450(10)
Y001 Ge1 ³	3.0984(5)	Gel	Fe04 ¹²	2.1673(6)
Y001 Ge14	3.0984(5)	Gel	Fe04 ¹¹	2.2442(6)
Y001 Ge17	3.1005(5)	Gel	Fe04 ⁶	2.2442(6)
Y001 Fe04 ⁷	3.1751(16)	Ge1	Fe04	2.1673(6)
Y001 Fe04	3.2474(7)			

Table S2. Single crystal diffraction data of $Y_4Fe_{1.44}Ge_8$ in the space group *P*-1 (column 3 in Table 1) collected using a laboratory single crystal x-ray diffractometer.

Empirical formula	Fe _{2.87} Ge ₁₆ Y ₈
Formula weight	2033.01
Temperature/K	296.15
Crystal system	triclinic
Space group	<i>P</i> -1
a/Å	5.7716(3)
b/Å	8.1916(4)
c/Å	11.5363(5)
α/°	79.5610(10)
β/°	88.3050(10)
$\gamma/^{\circ}$	79.5490(10)
Volume/Å ³	527.49(4)
Z	1
$\rho_{calc}g/cm^3$	6.400
µ/mm ⁻¹	45.972
F(000)	899.0
Radiation	MoKα ($\lambda = 0.71073$ Å)
2Θ range for data collection/°	3.59 to 70.32
Index ranges	$-9 \le h \le 9, -13 \le k \le 13, -18 \le l \le 18$
Reflections collected	23168
Independent reflections	4508 [$R_{int} = 0.0532$, $R_{sigma} = 0.0501$]
Data/restraints/parameters	4508/0/150
Goodness-of-fit on F ²	0.946
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0307, wR_2 = 0.0749$
Final R indexes [all data]	$R_1 = 0.1473, wR_2 = 0.1091$
Largest diff. peak/hole / e Å-3	1.27/-1.40

$$\begin{split} R = & \Sigma ||F_o| - |F_c|| \ / \ \Sigma |F_o|, \ wR = \{ \Sigma [w(|F_o|^2 - |F_c|^2)^2] \ / \ \Sigma [w(|F_o|^4)] \}^{1/2} \ \text{and} \ w = & 1/[\sigma^2(Fo^2) + (0.0315P)^2] \\ \text{where} \ P = & (Fo^2 + 2Fc^2)/3 \end{split}$$

Atom	x	у	Z	U(eq)
Y001	-3232(3)	7940(2)	7132.0(19)	8.5(4)
Y002	-3237(3)	7943(2)	2129.5(19)	8.2(4)
Y003	8236(3)	2055(2)	366.3(17)	8.5(4)
Ge00	13487(4)	1045(3)	493(2)	10.9(5)
Y005	1762(3)	7951(2)	4631.2(17)	8.1(4)
Gel	8480(3)	1054(3)	2993.9(19)	11.4(5)
Ge2	1501(3)	8956(3)	2005.9(19)	10.6(5)
Ge3	-3488(4)	8959(3)	4505(2)	11.4(5)
Ge4	-25(5)	5033(3)	3746(2)	28.4(7)
Ge5	10007(5)	4966(3)	1254(3)	28.4(7)
Ge6	5016(5)	5031(3)	1246(3)	27.5(6)
Ge7	5021(5)	4952(3)	3755(3)	26.9(6)
Fe0D	-2753(13)	6059(9)	4875(8)	7(2)
Fe0E	7772(15)	3931(10)	2627(8)	24(3)
Fe0F	2218(12)	6080(8)	2364(8)	14(2)
Fe0G	12747(15)	3956(10)	141(7)	12(2)

Table S2 extended. Anisotropic Displacement Parameters (Å²×10³). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b*}U_{12}+...]$.

U ₁₁	U ₂₂	U ₃₃	U ₂₃	U_{13}	U ₁₂
8.1(9)	8.1(8)	8.8(10)	-2.3(7)	-2.9(7)	0.9(7)
9.1(9)	6.3(8)	9.2(10)	-0.6(7)	-0.1(8)	-1.7(7)
7.3(10)	8.4(8)	9.9(11)	-2.4(8)	-1.8(8)	-0.4(7)
7.8(10)	19.1(11)	6.6(11)	-3.1(9)	0.3(9)	-3.7(8)
9.0(10)	7.8(8)	7.8(11)	-1.4(8)	-0.6(8)	-2.0(7)
6.1(10)	22.7(11)	6.1(12)	-4.8(9)	1.1(9)	-2.8(9)
6.8(10)	17.2(10)	7.9(12)	-2.6(9)	-0.3(9)	-1.9(8)
6.9(10)	19.1(11)	9.2(12)	-4.4(9)	-0.7(9)	-2.7(8)
36.2(17)	17.0(12)	31.2(17)	-2.6(12)	-7.2(14)	-3.3(11)
33.6(16)	18.4(12)	33.6(18)	-5.7(12)	-8.9(13)	-3.3(11)
33.1(15)	16.7(11)	31.8(17)	-3.2(11)	-6.1(13)	-2.3(10)
30.6(15)	17.5(11)	30.4(16)	-2.3(11)	-6.3(12)	0.4(10)
5(4)	-1(3)	15(5)	-1(3)	-2(3)	0(3)
29(5)	27(4)	15(5)	2(3)	-5(4)	-11(4)
7(4)	9(3)	28(5)	-10(3)	-1(3)	4(3)
19(5)	9(4)	8(5)	0(3)	1(3)	-2(3)
	$\begin{array}{c} \mathbf{U_{11}}\\ 8.1(9)\\ 9.1(9)\\ 7.3(10)\\ 7.8(10)\\ 9.0(10)\\ 6.1(10)\\ 6.1(10)\\ 6.8(10)\\ 6.9(10)\\ 36.2(17)\\ 33.6(16)\\ 33.1(15)\\ 30.6(15)\\ 5(4)\\ 29(5)\\ 7(4)\\ 19(5) \end{array}$	$\begin{array}{c cccc} U_{11} & U_{22} \\ 8.1(9) & 8.1(8) \\ 9.1(9) & 6.3(8) \\ 7.3(10) & 8.4(8) \\ 7.8(10) & 19.1(11) \\ 9.0(10) & 7.8(8) \\ 6.1(10) & 22.7(11) \\ 6.8(10) & 17.2(10) \\ 6.9(10) & 19.1(11) \\ 36.2(17) & 17.0(12) \\ 33.6(16) & 18.4(12) \\ 33.1(15) & 16.7(11) \\ 30.6(15) & 17.5(11) \\ 5(4) & -1(3) \\ 29(5) & 27(4) \\ 7(4) & 9(3) \\ 19(5) & 9(4) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S2 extended. Bond Lengths.

Atom A	Atom	Length/Å	Atom	Atom	Length/Å
Y001 C	Ge00 ¹	2.996(3)	Y005	Ge3 ³	3.206(3)
Y001	Ge1 ²	2.992(3)	Y005	Ge3	2.993(3)
Y001	Ge1 ¹	2.996(3)	Y005	Ge3 ¹³	2.995(3)
Y001	Ge2 ³	3.217(3)	Y005	Ge4	3.108(3)
Y001	Ge3 ⁴	3.214(3)	Y005	Ge4 ²	3.100(3)
Y001	Ge3	2.995(3)	Y005	Ge7	3.116(3)
Y001	Ge4 ²	3.100(3)	Y005	Ge7 ¹	3.093(3)
Y001	Ge5 ¹	3.097(3)	Y005	Fe0D ²	3.178(7)
Y001	Ge6 ²	3.103(3)	Y005	Fe0F	3.244(8)
Y001	Ge7 ²	3.090(3)	Gel	Ge2 ¹⁰	2.607(2)
Y001 H	Fe0D	3.238(9)	Gel	Ge3 ¹⁰	2.604(3)
Y001 F	Fe0F ²	3.186(7)	Gel	Fe0E	2.280(8)
Y002 C	Ge00 ⁵	2.989(3)	Ge2	Fe0F	2.280(7)
Y002 C	Ge00 ⁶	3.213(3)	Ge3	Ge3 ⁴	2.601(4)
Y002	Ge1 ⁷	3.219(3)	Ge3	Fe0D	2.298(7)
Y002	Ge2 ⁸	3.000(3)	Ge4	Ge4 ²	2.886(6)
Y002	Ge2	2.991(3)	Ge4	Ge5 ⁸	2.884(3)
Y002	Ge3	2.997(3)	Ge4	Ge7 ⁸	2.872(3)
Y002	Ge4	3.096(3)	Ge4	Ge7	2.901(3)
Y002	Ge5 ⁸	3.098(3)	Ge4	Fe0D	2.163(8)
Y002	Ge6 ⁸	3.092(3)	Ge4	Fe0D ²	2.241(9)
Y002	Ge7 ⁸	3.106(3)	Ge4	Fe0E ⁸	2.243(9)
Y002 F	FeOE ⁸	3.180(8)	Ge4	Fe0F	2.176(8)
Y002 I	Fe0F	3.236(7)	Ge5	Ge5 ¹¹	2.884(6)
Y003 C	Ge00 ⁸	2.996(3)	Ge5	Ge6 ¹³	2.901(3)
Y003 (Ge00	2.994(3)	Ge5	Ge6	2.871(3)
Y003 C	Ge00 ⁹	3.210(3)	Ge5	Fe0E	2.163(9)
Y003	Gel	2.994(3)	Ge5	Fe0F ¹³	2.246(9)
Y003	Ge2 ⁵	2.992(3)	Ge5	Fe0G ¹¹	2.241(9)
Y003 C	$Ge2^{10}$	3.210(3)	Ge5	Fe0G	2.150(9)
Y003	Ge5	3.100(3)	Ge6	Ge6 ⁵	2.884(6)
Y003 C	Ge5 ¹¹	3.100(3)	Ge6	Ge7	2.883(3)
Y003	Ge6 ⁵	3.107(3)	Ge6	Fe0E	2.234(9)
Y003	Ge6	3.093(3)	Ge6	Fe0F	2.188(8)
Y003 F	Fe0F ⁵	3.238(9)	Ge6	Fe0G ¹¹	2.168(8)
Y003 F	$e0G^{11}$	3.162(8)	Ge6	Fe0G ⁸	2.245(10)
Ge00 G	e00 ¹²	2.603(4)	Ge7	Ge7 ¹	2.888(6)
Ge00 (Ge2 ¹⁰	2.607(3)	Ge7	Fe0D ¹³	2.256(9)

Ge00	Fe0G	2.308(8)	Ge7	Fe0D ²	2.167(8)
Y005	Ge1 ⁷	3.216(3)	Ge7	Fe0E	2.168(9)
Y005	Ge1 ¹	2.989(3)	Ge7	Fe0F	2.262(8)
Y005	Ge2	2.992(3)			

Empirical formula	FeGe _{7.27} Y _{4.12}
Formula weight	950.84
Temperature/K	273.15
Crystal system	triclinic
Space group	P-1
a/Å	11.4441(3)
b/Å	32.7356(7)
c/Å	11.4456(3)
α/°	79.6330(10)
β/°	88.3300(10)
$\gamma/^{\circ}$	79.6350(10)
Volume/Å ³	4149.01(18)
Z	16
$\rho_{calc}g/cm^3$	6.089
μ/mm^{-1}	44.801
F(000)	6716.0
Radiation	Synchrotron X-rays ($\lambda = 0.41328$ Å)
2Θ range for data collection/	° 2.57 to 72.638
Index ranges	$-19 \le h \le 19, -54 \le k \le 54, -18 \le 1 \le 19$
Reflections collected	211855
Independent reflections	$38527 [R_{int} = 0.0667, R_{sigma} = 0.0640]$
Data/restraints/parameters	38527/0/1258
Goodness-of-fit on F ²	0.900
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0844, wR_2 = 0.3076$
Final R indexes [all data]	$R_1 = 0.3148, wR_2 = 0.5523$
Largest diff. peak/hole / e Å-	3 16.01/-2.72

Table S3. Single crystal diffraction data of $Y_4Fe_xGe_8$ in the space group *P*-1 collected using synchrotron X-rays at 15-IDD (NSF's ChemMatCARS at the Advanced Photon Source).

Atom	x	У	z	U(eq)

Atom	x	У	Ζ	U(eq)
Y001	9114(2)	9260.8(9)	5371(2)	0.8(5)
Y002	6613(2)	1776.4(9)	12865(3)	-0.2(5)
Y003	4120(2)	1759.9(8)	10363(3)	-0.6(5)
Y004	9111(2)	6772.8(9)	5370(2)	-0.4(5)
Y005	10892(2)	5725.7(9)	-363(3)	-1.0(5)
Y006	10891(3)	5726.0(9)	4638(3)	0.1(5)
Y007	10881(2)	8241.3(8)	-369(3)	-0.3(5)
Y008	5883(2)	3230.0(9)	-362(2)	-0.9(5)
Y009	5883(2)	3225.8(9)	4633(2)	-0.7(5)
Y00A	6625(2)	4259.3(9)	2871(2)	-0.8(5)
Y00B	8390(2)	-1772.6(9)	12134(2)	-0.9(5)
Y00C	3386(2)	726.2(9)	12140(3)	-0.3(5)
Y00D	4117(2)	1758.2(8)	5377(3)	-0.5(5)
Y00E	8392(2)	725.6(8)	12138(2)	-0.5(5)
Y00F	6624(2)	6760.5(8)	-2129(3)	-0.3(5)
Y00G	5879(2)	741.0(9)	4629(2)	-0.3(5)
Y00H	9120(2)	9261.5(9)	366(2)	-0.7(5)
Y00I	6613(2)	-725.5(9)	12860(2)	-0.6(5)
Y00J	6617(2)	6761.8(8)	2865(3)	-0.2(5)
Y00K	1605(3)	-725.7(8)	12866(2)	-0.2(5)
Y00L	6626(2)	4259.3(9)	7867(2)	-0.8(5)
Y00M	4112(3)	4276.0(9)	361(3)	-0.5(5)
Y00N	9113(2)	6773.7(9)	362(2)	0.2(5)
Y00O	8380(2)	3238.3(8)	2129(3)	-1.0(5)
Y00P	8381(2)	5740.8(9)	-2869(2)	-0.6(5)
Y00Q	3386(2)	-1774.4(9)	12134(2)	-0.6(5)
Y00R	8379(2)	3236.9(8)	7136(3)	-0.3(5)
Y00S	4109(2)	4275.0(9)	5363(3)	-0.8(5)
Y00T	10881(2)	-1760.3(8)	14629(3)	-1.0(5)
Y00U	5883(2)	740.3(9)	9635(2)	0.1(5)
Y00V	8380(2)	5741.4(9)	2131(2)	-0.9(5)
Y00W	1610(2)	1774.3(9)	12867(2)	-0.5(5)
Ge0X	-761(3)	1513.2(11)	13003(3)	2.9(8)
Ge0Y	4239(3)	1512.1(11)	12999(3)	1.0(8)
Ge0Z	8253(3)	988.6(11)	4505(3)	0.6(8)
Ge10	10762(3)	-1510.8(11)	11998(3)	1.3(8)
Ge11	10756(3)	5987.4(13)	2004(3)	2.3(9)
Ge12	4237(3)	4013.8(12)	8002(3)	0.9(8)
Ge13	4237(3)	-991.1(12)	12993(3)	3.5(9)
Ge14	6744(3)	9013.1(12)	500(3)	2.9(9)
Ge15	10761(3)	5991.0(12)	-3006(3)	3.0(8)

Atom	x	у	Z,	U(eq)
Ge16	8258(3)	8490.4(12)	-504(3)	3.7(9)
Ge17	6743(3)	6511.7(11)	5503(3)	1.5(8)
Ge18	9247(3)	-991.3(12)	12990(3)	3.9(9)
Ge19	8263(3)	5988.2(12)	-495(3)	5.1(9)
GelA	8265(3)	5990.8(12)	4494(3)	4.4(9)
Ge1B	5753(3)	3490.2(13)	7000(3)	3.0(9)
GelC	9246(3)	6506.8(13)	-1990(3)	2.1(8)
Ge1D	6749(3)	6509.9(11)	503(3)	1.4(8)
Ge1E	756(3)	993.0(12)	11997(3)	2.8(8)
Ge1F	6745(3)	1508.9(13)	10505(3)	3.1(9)
Ge1G	5758(3)	-1508.5(11)	11996(4)	2.5(8)
Ge1H	6737(3)	9012.1(12)	5503(3)	1.9(8)
GelI	8258(3)	989.0(12)	9498(3)	1.9(8)
GelJ	9245(3)	6510.0(12)	3000(3)	3.4(9)
Ge1K	6744(3)	1509.2(12)	5501(3)	2.8(8)
GelL	5761(3)	991.0(12)	11993(3)	5.3(9)
Ge1M	8255(3)	8493.4(13)	4491(3)	3.8(9)
Ge1N	6743(3)	4005.9(12)	5504(3)	3.3(9)
Ge1O	4238(3)	4016.5(12)	3000(3)	3.4(9)
Ge1P	8259(3)	3490.7(11)	-498(3)	2.6(8)
GelQ	8262(3)	3484.7(11)	4507(3)	1.9(8)
Y01R	5748(3)	3496.9(12)	2000(3)	9.5(7)
Ge1S	6743(3)	4008.7(12)	499(3)	3.9(9)
Ge1T	7391(3)	7511.4(15)	-3744(4)	12.5(11)
Ge1U	5011(4)	-11.9(13)	11172(5)	20.2(13)
Ge1V	4982(4)	4990.2(14)	1372(3)	11.1(10)
Ge1W	4890(20)	2464(12)	11290(30)	21(7)
Ge1X	7612(4)	2486.3(15)	3756(4)	14.0(12)
GelY	7504(5)	12.5(14)	11158(4)	21.1(11)
Ge1Z	7600(4)	2509.2(14)	1202(5)	19.2(12)
Ge20	7472(5)	5015.3(13)	1342(4)	15.3(12)
Ge21	10014(5)	5009.6(14)	3673(4)	20.1(13)
Ge22	4991(4)	13.4(12)	13836(5)	16.6(11)
Ge23	7488(4)	5015.2(12)	6330(3)	10.0(9)
Ge24	7572(5)	2513.8(14)	6224(5)	16.4(12)
Ge25	4927(4)	2490.6(13)	6246(5)	17.0(12)
Ge26	10078(4)	7511.6(13)	-1260(4)	16.1(11)
Ge28	10114(4)	7489.1(14)	6225(4)	14.7(11)
Ge29	10071(4)	7487.5(14)	1235(4)	14.6(12)
Ge2A	7530(4)	4990.9(12)	3638(4)	15.1(11)
Ge2B	2485(5)	-12.5(14)	13846(4)	17.7(14)

Atom	x	у	z	U(eq)
Ge2C	7478(5)	-8.9(14)	13859(4)	19.1(13)
Ge2D	2517(5)	10.8(14)	11148(4)	15.5(13)
Ge2E	7422(5)	7487.9(14)	3764(5)	17.9(13)
Ge2F	22(5)	-12.0(13)	11164(4)	15.7(12)
Ge2G	5023(4)	5012.0(13)	3626(3)	13.2(11)
Ge2H	10004(4)	5011.0(14)	-1329(4)	14.5(11)
Ge2I	4780(40)	2508(6)	8950(40)	9(4)
Ge2J	7531(5)	4987.1(13)	-1340(4)	19.1(13)
Ge2L	9968(4)	13.2(13)	13839(4)	13.9(11)
Ge2M	7566(5)	2487.4(15)	8756(5)	23.5(15)
Ge2N	10079(4)	7509.2(13)	3733(5)	16.9(12)
Ge2O	7428(5)	7512.8(15)	1248(5)	23.0(14)
Fe2P	6122(8)	2760(3)	2380(8)	5(2)
Fe2Q	6115(10)	265(3)	12365(10)	5(3)
Fe2R	8888(8)	7235(3)	-2370(8)	6(2)
Fe2S	6382(8)	4740(3)	5133(8)	4(2)
Fe2T	6396(8)	4741(3)	124(8)	6(2)
Fe2U	8601(9)	5268(3)	-121(9)	2(2)
Fe2V	6130(9)	2763(4)	7368(9)	1(3)
Fe2W	8890(9)	7235(3)	2613(10)	3(3)
Fe2X	6392(10)	2236(4)	10146(10)	0(3)
Fe2Y	8611(10)	5265(4)	4871(10)	5(3)
Fe2Z	1116(9)	259(3)	12375(9)	5(2)
Fe30	6381(9)	2240(3)	5122(10)	4(3)
Fe31	8904(10)	-265(3)	12630(9)	3(2)
Fe32	8619(9)	7762(3)	4878(9)	2(3)
Fe33	3883(10)	-267(3)	12615(10)	2(3)
Fe34	8591(11)	7756(4)	-135(10)	7(3)
Fe1	8850(20)	2231(8)	7640(20)	12(6)
Fe2	6120(20)	7778(7)	2380(20)	5(5)
Fe3	3500(50)	2790(20)	4950(40)	50(30)
Fe9	11430(40)	7233(12)	220(50)	28(13)
Fe12	3850(50)	2211(16)	12680(50)	20(14)
Fe13	8880(40)	4720(14)	2660(30)	21(13)
Fe14	8930(20)	4708(12)	-2350(20)	28(10)
Fe6	6420(30)	7232(11)	100(30)	8(8)
Fe15	6160(40)	5279(16)	2460(50)	-1(12)
Ge1	4880(3)	2513.3(13)	3785(4)	12.8(11)
Ge2	7410(5)	7489.7(14)	-1218(5)	15.9(12)
Ge7	5020(20)	2514(5)	8690(20)	6(2)
Ge8	4953(13)	2500(5)	11226(15)	24(4)

Atom x		у	z	U(eq)
Fe19	8550(40)	278(15)	14860(40)	4(11)
Fe7	6490(40)	-320(15)	10190(50)	19(15)
Fe4	6520(40)	-255(16)	15090(40)	0(12)
Fe10	11450(70)	7779(12)	-2750(40)	90(30)
Fe8	11580(160)	7200(20)	4990(60)	200(80)
Fe11	1630(80)	-292(18)	10090(50)	50(30)

uispiace		sponent takes in	$\sim 1011112\pi$ [11 a	$a = O_{11} + 2 \Pi Ka = C$	U ₁₂ · j .	
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Y001	0.7(10)	1.4(11)	0.4(11)	0.5(10)	0.6(8)	-1.5(9)
Y002	-0.3(10)	-0.8(11)	0.6(11)	-0.4(9)	1.0(8)	-0.2(9)
Y003	-0.3(10)	-0.3(11)	-1.0(10)	0.3(10)	-0.1(8)	-0.5(9)
Y004	-0.6(10)	0.7(11)	-0.7(11)	-0.5(9)	0.3(8)	-0.6(9)
Y005	-1.0(9)	-0.9(11)	-1.0(10)	0.2(9)	0.0(7)	0.1(9)
Y006	-0.9(9)	2.2(11)	-0.9(10)	-0.5(10)	0.1(7)	-0.3(9)
Y007	0.3(10)	-0.4(10)	-0.5(10)	-0.3(10)	0.8(8)	-0.7(9)
Y008	-1.0(10)	-1.0(11)	-0.8(11)	0.2(9)	0.0(8)	0.2(9)
Y009	-1.0(10)	-0.5(12)	-0.9(11)	0.4(9)	0.0(8)	0.2(9)
Y00A	-0.8(10)	-1.0(11)	-0.7(11)	0.1(10)	0.3(8)	0.1(9)
Y00B	-1.0(10)	-0.6(11)	-0.9(11)	0.0(9)	0.0(8)	0.1(9)
Y00C	-0.9(10)	-0.4(11)	-0.2(11)	0.9(10)	0.3(8)	0.4(9)
Y00D	-0.3(10)	-0.8(11)	-0.1(10)	-0.3(10)	0.8(8)	-0.3(9)
Y00E	-0.5(10)	0.1(11)	-0.9(10)	-0.1(10)	0.2(8)	-0.6(9)
Y00F	-0.1(10)	0.2(11)	-0.5(10)	-0.3(10)	0.6(8)	-0.7(9)
Y00G	-0.2(10)	0.1(11)	-0.7(10)	0.5(9)	0.2(8)	-0.3(9)
Y00H	-1.0(10)	-0.4(11)	-0.8(10)	0.3(9)	0.1(8)	0.2(9)
Y00I	-1.0(10)	0.1(11)	-1.0(10)	0.3(10)	0.0(8)	-0.1(9)
Y00J	-1.0(10)	1.1(11)	-0.9(10)	0.6(10)	0.0(8)	-0.1(9)
Y00K	-0.2(10)	-0.6(11)	0.1(10)	0.8(10)	-0.5(8)	-0.3(9)
Y00L	-0.6(10)	-1.0(11)	-0.7(11)	0.2(10)	0.3(8)	0.2(9)
Y00M	-0.5(9)	0.3(11)	-1.0(10)	0.1(10)	0.1(7)	-0.6(10)
Y00N	-0.3(10)	2.2(11)	-0.9(11)	-0.3(10)	0.2(8)	-1.4(9)
Y00O	-1.0(10)	-0.9(10)	-1.0(10)	0.2(10)	0.0(8)	0.2(9)
Y00P	-1.0(10)	0.0(11)	-0.5(11)	-0.6(10)	0.1(8)	0.0(9)
Y00Q	-1.0(10)	-0.5(11)	-0.5(11)	0.7(9)	0.1(8)	0.3(9)
Y00R	-0.4(10)	-1.0(10)	0.6(10)	0.0(10)	1.0(8)	0.1(9)
Y00S	-0.8(9)	-0.5(11)	-0.9(10)	0.0(10)	0.1(7)	-0.1(9)
Y00T	-1.0(10)	-1.0(10)	-1.0(10)	0.2(10)	0.0(8)	0.2(9)
Y00U	-0.3(10)	-0.2(11)	0.5(11)	1.3(10)	-1.0(8)	-0.6(9)
Y00V	-1.0(10)	-0.8(11)	-0.9(11)	0.3(10)	0.0(8)	0.1(9)
Y00W	-1.0(10)	0.5(11)	-1.0(11)	0.1(9)	0.0(8)	0.1(9)
Ge0X	1.6(14)	6.0(16)	1.1(13)	0.5(14)	1.8(10)	-2.2(13)
Ge0Y	-0.9(13)	3.9(16)	-0.9(13)	0.9(13)	0.1(9)	0.7(12)
Ge0Z	-0.3(13)	2.6(17)	-0.4(14)	-0.7(12)	-0.5(10)	0.1(12)
Ge10	0.2(13)	4.8(15)	-0.8(13)	-0.9(13)	0.1(9)	-0.8(12)
Ge11	0.5(14)	7.2(19)	-0.2(15)	-0.2(13)	0.8(10)	-2.5(12)
Ge12	-0.3(14)	3.6(17)	-0.4(14)	-0.4(13)	0.6(10)	-1.0(12)
Ge13	0.4(14)	8.4(18)	2.0(15)	-1.6(14)	1.0(10)	-1.2(13)

Table 3 extended. Anisotropic Displacement Parameters (Å²×10³). The Anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁+2hka*b*U₁₂+...].

uispiace		sponent takes in	$\sim 1011112\pi$ [11 a	O_{Π} · Z_{Π} Ka t	<i>U</i> ₁₂ ,].	
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ge14	1.2(15)	5.8(18)	2.7(16)	-0.6(13)	0.1(11)	-3.7(13)
Ge15	0.5(13)	9.6(17)	-0.4(14)	-1.2(13)	1.0(10)	-2.3(12)
Ge16	3.2(14)	6.6(17)	1.7(15)	-0.3(13)	-0.8(10)	-2.6(13)
Ge17	-0.3(14)	4.7(16)	-0.3(14)	0.0(14)	0.7(10)	0.3(13)
Ge18	0.3(14)	10.4(19)	1.6(15)	-2.7(14)	-0.4(10)	-0.4(14)
Ge19	1.8(14)	12.7(18)	1.3(14)	0.0(14)	0.1(10)	-4.1(13)
GelA	0.6(13)	12.9(18)	1.2(14)	-4.9(14)	1.4(10)	-1.6(13)
Ge1B	0.8(14)	9.7(19)	-0.5(15)	-2.1(14)	0.5(11)	-2.3(13)
Ge1C	-0.7(14)	8.3(18)	-0.5(15)	-1.8(13)	0.4(10)	-1.2(13)
Ge1D	1.3(13)	4.9(15)	-1.0(13)	0.0(13)	0.1(10)	-3.5(12)
Ge1E	-0.4(13)	9.9(18)	-0.2(14)	-2.2(14)	0.7(10)	-1.9(13)
Ge1F	-0.5(14)	8.6(18)	1.6(16)	-1.4(14)	1.0(11)	-1.6(13)
Ge1G	0.3(14)	7.7(17)	-0.5(14)	0.8(14)	0.2(10)	-1.9(13)
Ge1H	1.4(14)	5.3(17)	0.2(14)	-1.2(13)	1.5(10)	-3.2(12)
Ge1I	0.9(14)	3.6(17)	1.5(15)	-0.7(13)	2.0(10)	-1.4(12)
Ge1J	-0.2(14)	9.2(18)	1.5(15)	-1.7(14)	1.4(10)	-0.9(13)
Ge1K	-0.5(13)	8.0(17)	1.0(15)	-0.4(13)	0.6(10)	-1.7(12)
GelL	2.6(14)	13.2(19)	0.9(15)	0.0(14)	2.0(10)	-4.6(14)
Ge1M	2.6(14)	9.1(18)	-0.2(15)	-1.0(14)	1.7(10)	-1.5(13)
Ge1N	0.3(14)	9.7(18)	-0.1(15)	0.5(14)	0.8(10)	-2.0(13)
Ge10	0.4(14)	8.1(17)	1.1(14)	1.2(12)	1.3(10)	-1.5(12)
Ge1P	0.8(14)	6.3(16)	0.7(14)	-0.3(13)	1.5(10)	-1.3(13)
GelQ	0.6(13)	5.5(15)	0.1(13)	-1.0(13)	1.2(9)	-1.3(12)
Y01R	2.2(12)	20.4(18)	6.4(13)	-2.8(13)	3.9(10)	-3.3(12)
GelS	1.4(14)	10.5(18)	0.8(14)	-1.2(14)	1.8(10)	-3.6(13)
Ge1T	2.3(17)	9(2)	27(2)	-4.1(18)	-0.7(15)	-2.6(14)
GelU	24(2)	6.5(18)	28(3)	-3.4(17)	-4.8(18)	4.8(17)
GelV	20(2)	12(2)	2.1(15)	0.8(14)	6.5(13)	-8.0(16)
GelW	8(9)	26(14)	29(11)	2(9)	13(12)	-9(8)
GelX	3.4(18)	9(2)	31(3)	-4.7(18)	0.5(16)	-1.8(15)
GelY	42(3)	10(2)	12(2)	-3.6(16)	-1.2(18)	-3.9(18)
Ge1Z	16.8(19)	8.1(19)	30(2)	3.1(18)	-2.2(15)	-2.5(15)
Ge20	30(3)	6.1(18)	7.0(17)	-1.2(15)	-1.5(15)	5.4(17)
Ge21	33(3)	7.3(18)	20(2)	-2.4(16)	-9.9(19)	-1.7(18)
Ge22	26(2)	4.2(17)	18(2)	-3.7(15)	-5.0(16)	5.6(15)
Ge23	10.3(17)	11.7(18)	5.6(15)	0.0(14)	8.2(12)	1.5(14)
Ge24	18(2)	3.2(18)	26(2)	1.2(17)	-4.0(16)	1.1(16)
Ge25	12.7(18)	6.3(18)	30(3)	0.5(18)	-6.5(16)	1.4(15)
Ge26	2.2(14)	10.9(19)	33(3)	1.3(18)	6.5(13)	-2.6(14)

Table 3 extended. Anisotropic Displacement Parameters ($Å^2 \times 10^3$). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

displace					J U12 ·].	
Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U ₁₂
Ge28	3.3(16)	9.0(19)	32(2)	-8.1(18)	3.8(14)	1.5(14)
Ge29	12.8(19)	4.1(19)	26(2)	-3.5(17)	-2.4(15)	2.1(15)
Ge2A	24(2)	6.6(17)	12.8(18)	-2.2(15)	-3.7(15)	4.7(15)
Ge2B	33(3)	5.5(19)	15(2)	-4.1(16)	-6(2)	-1.4(18)
Ge2C	36(3)	5.6(19)	16(2)	0.6(16)	-5.9(19)	-5.2(18)
Ge2D	29(3)	1.6(19)	16(3)	0.4(16)	-1.7(19)	-3.0(17)
Ge2E	16(2)	5.9(19)	30(3)	3.3(19)	0.2(17)	-3.8(17)
Ge2F	24(3)	6.7(19)	14(2)	-3.8(16)	-4.9(18)	4.6(17)
Ge2G	32(3)	8.5(18)	0.3(15)	-1.5(13)	6.4(14)	-7.4(17)
Ge2H	19(2)	6.7(19)	20(2)	-5.2(16)	0.4(15)	-5.4(15)
Ge2I	14(7)	-1(4)	13(8)	0(4)	15(6)	0(4)
Ge2J	38(3)	3.1(18)	14.4(19)	-2.2(16)	-11.3(17)	3.2(19)
Ge2L	19(2)	6.7(18)	13(2)	-3.4(15)	0.9(16)	5.4(15)
Ge2M	34(3)	2.4(19)	34(3)	-8.0(19)	-13(2)	5.0(18)
Ge2N	11.7(18)	5.0(19)	32(3)	1.6(18)	-13.7(16)	1.7(15)
Ge2O	39(3)	1.7(19)	29(3)	-4.5(18)	-8(2)	-1.9(18)
Fe2P	4(3)	13(5)	0(4)	-3(3)	2(3)	-5(3)
Fe2Q	8(4)	4(5)	3(5)	1(4)	-4(3)	-6(4)
Fe2R	5(4)	7(4)	5(4)	1(3)	6(3)	-1(3)
Fe2S	2(3)	9(4)	1(4)	-2(3)	3(3)	-1(3)
Fe2T	3(3)	11(4)	3(4)	-1(3)	4(2)	0(3)
Fe2U	1(4)	4(4)	2(4)	2(3)	-2(3)	-2(3)
Fe2V	4(4)	-1(5)	1(5)	1(4)	-3(3)	-1(3)
Fe2W	1(4)	0(5)	7(5)	0(4)	-1(3)	1(3)
Fe2X	-1(5)	0(5)	0(5)	1(4)	1(4)	1(4)
Fe2Y	1(4)	10(6)	4(5)	3(4)	-3(3)	-1(4)
Fe2Z	1(4)	9(5)	3(4)	1(3)	3(3)	0(3)
Fe30	0(4)	2(4)	9(5)	1(4)	-2(3)	-2(3)
Fe31	10(4)	0(4)	-1(4)	0(3)	1(3)	-3(4)
Fe32	-1(4)	3(5)	3(5)	4(4)	1(3)	1(3)
Fe33	2(4)	-1(5)	5(5)	-1(4)	5(3)	-1(3)
Fe34	13(5)	5(6)	0(5)	1(4)	3(4)	7(4)
Fe1	5(9)	15(13)	10(9)	9(9)	8(6)	3(9)
Fe2	-1(8)	3(9)	11(10)	-1(8)	2(7)	0(7)
Fe3	20(30)	90(60)	10(20)	10(20)	5(16)	50(30)
Fe9	17(17)	3(16)	60(30)	16(18)	-34(17)	-8(13)
Fe12	30(30)	0(20)	20(20)	4(18)	20(17)	10(20)
Fe13	40(30)	20(20)	0(16)	3(15)	-2(14)	4(18)
Fe14	0(10)	80(30)	-1(11)	2(12)	0(8)	-7(11)

Table 3 extended. Anisotropic Displacement Parameters ($Å^2 \times 10^3$). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

1		1	L	11	14]		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Fe6	-1(13)	17(16)	6(14)	5(12)	0(10)	-1(11)	
Fe15	0(20)	0(20)	0(20)	0(17)	0(16)	0(15)	
Ge1	4.5(16)	6.0(18)	28(2)	-5.8(16)	-1.5(14)	0.3(14)	
Ge2	12(2)	6.5(19)	26(2)	1.6(18)	-4.9(15)	1.4(16)	
Ge7	4(5)	12(4)	4(5)	-4(3)	5(4)	-3(3)	
Ge8	28(7)	1(5)	41(8)	-6(4)	-29(8)	7(4)	
Fe19	10(20)	0(19)	-1(19)	0(15)	-1(14)	-4(14)	
Fe7	0(20)	8(19)	40(30)	5(18)	10(20)	3(15)	
Fe4	-1(18)	0(20)	1(19)	2(14)	0(14)	1(14)	
Fe10	240(80)	0(15)	40(20)	-5(14)	-90(40)	10(30)	
Fe8	600(200)	10(30)	20(30)	10(20)	-120(60)	-70(70)	
Fe11	110(80)	10(20)	40(30)	10(20)	30(40)	-10(30)	

Table 3 extended. Anisotropic Displacement Parameters (Å²×10³). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S4. Atomic coordinates for the $\sqrt{2} \times \sqrt{2}$ supercell of the orthorhombic *Cmcm* structure with a formula of Y₄Fe_{1.5}Ge₈ used in DFT calculations.

	Х	У	Z	Occ.	U	Site	Sym.
1 Y Y1	0.62500	0.87500	0.39728	1.000	0.000	1a	1
2 Y Y2	0.12500	0.37500	0.39728	1.000	0.000	1a	1
3 Y Y3	0.37500	0.12500	0.60272	1.000	0.000	1a	1
4 Y Y4	0.87500	0.62500	0.60272	1.000	0.000	1a	1
5 Y Y5	0.37500	0.62500	0.89728	1.000	0.000	1a	1
6 Y Y6	0.87500	0.12500	0.89728	1.000	0.000	1a	1
7 Y Y7	0.12500	0.87500	0.10272	1.000	0.000	1a	1
8 Y Y8	0.62500	0.37500	0.10272	1.000	0.000	1a	1
9 Ge Gel	0.12500	0.87500	0.44766	1.000	0.000	1a	1
10 Ge Ge2	0.62500	0.37500	0.44766	1.000	0.000	1a	1
11 Ge Ge3	0.37500	0.62500	0.55234	1.000	0.000	1a	1
12 Ge Ge4	0.87500	0.12500	0.55234	1.000	0.000	1a	1
13 Ge Ge5	0.37500	0.12500	0.94766	1.000	0.000	1a	1
14 Ge Ge6	0.87500	0.62500	0.94766	1.000	0.000	1a	1
15 Ge Ge7	0.62500	0.87500	0.05234	1.000	0.000	1a	1
16 Ge Ge8	0.12500	0.37500	0.05234	1.000	0.000	1a	1
17 Ge Ge9	0.37500	0.62500	0.25175	1.000	0.000	1a	1
18 Ge Ge10	0.87500	0.12500	0.25175	1.000	0.000	1a	1
19 Ge Gel1	0.12500	0.87500	0.74825	1.000	0.000	1a	1
20 Ge Ge12	0.62500	0.37500	0.74825	1.000	0.000	1a	1
21 Ge Ge13	0.62500	0.87500	0.75175	1.000	0.000	1a	1
22 Ge Ge14	0.12500	0.37500	0.75175	1.000	0.000	1a	1
23 Ge Ge15	0.37500	0.12500	0.24825	1.000	0.000	1a	1
24 Ge Ge16	0.87500	0.62500	0.24825	1.000	0.000	1a	1
25 Fe Fe1	0.12500	0.87500	0.30308	1.000	0.000	1a	1
26 Fe Fe2	0.62500	0.37500	0.30308	1.000	0.000	1a	1
27 Fe Fe3	0.37500	0.62500	0.69692	1.000	0.000	1a	1

Reference

- 1. M. A. Zhuravleva, D. Bilc, R. J. Pcionek, S. Mahanti and M. G. Kanatzidis, *Inorganic chemistry*, 2005, **44**, 2177-2188.
- J.-K. Bao, H. Zheng, J. Wen, S. Ramakrishnan, H. Zheng, J. S. Jiang, D. Bugaris, G. Cao, D. Y. Chung, S. van Smaalen and M. G. Kanatzidis, *Chemistry of Materials*, 2021, 33, 7839-7847.