High-performance WS2/ZnO QDs heterojunction photodetector with charge and energy transfer

Yanjie Zheng,^a Zhe Xu,^b Kaixi Shi,*a Jinhua Li,*a Xuan Fang,^c Zhenfeng Jiang,^a Xueying Chu^a

- *a. Nanophotonics and Biophotonics Key Laboratory of Jilin Province, School of Physics, Changchun University of Science and Technology, Changchun, Jilin 130022, People's Republic of China*
- *b. Changchun High-tech Industrial Development Zone, Shangde Academy of Jilin University, Changchun, Jilin 130000, People's Republic of China*
- *c. State Key Laboratory of High Power Semiconductor Laser, School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, People's Republic of China*

E-mail: [shikaixi@cust.edu.cn,](mailto:shikaixi@cust.edu.cn) lijh@cust.edu.cn

Supporting Information

1. Preparation process and optical characterization of ZnO QDs.

Figure S1a shows the synthesis steps of zinc oxide quantum dots with oxygen interstitials. Figures S1b and c show the absorption and luminescence spectra of ZnO QDs at different concentrations, respectively. At a concentration of 18 mmol/L, the luminescence intensity of ZnO QDs is the strongest. This is attributed to the appropriate concentration of QDs suppressing their aggregation. Strong luminescence will generate a larger spectral overlap with the absorption of WS_2 , which facilitates dipole-dipole interactions and creates conditions for non-radiative energy transfer. Next, the bandgap of ZnO QDs was calculated by the following equation:

$$
(\alpha \cdot hv)^2 = B \cdot \left(hv - E_g\right)
$$

where α is the absorption coefficient, h is the Planck's constant, ν is the frequency of the incident light, and *B* is a constant. As shown in Figure S1d, the bandgap of ZnO QDs was about 3.34 eV.

Figure S1. (a) Synthesis steps of ZnO QDs using the sol-gel method. Absorption spectra (b) and luminescence spectra (c) of ZnO QDs at different concentrations. (d) Bandgap of 18 mmol/L ZnO QDs.

2.The UV photoresponse of the WS² and WS2/ZnO QDs devices under 325 nm laser irradiation.

To demonstrate the broad spectral response of WS_2/ZnO heterojunction photodetector, the UV photoresponse of the device was tested under 325 nm laser irradiation. As shown in the Figure S2a-b, the WS_2 device and the WS_2/ZnO device exhibit UV photoresponse. As shown in the Figure S2c-d, the WS_2/ZnO device exhibits enhanced UV photoresponse under 325 nm laser irradiation with different optical power densities. As a result, a UV-visible photodetector based WS_2/ZnO heterojunction was achieved.

Figure S2. The I-V curves of WS_2 (a) and WS_2/ZnO QDs (b) photodetectors under 325 nm laser irradiation with different optical power densities. The dependence of photocurrent (c) and detectivity (d) for WS_2 and WS_2/ZnO QDs photodetectors under 325 nm laser irradiation with different optical power densities.

3. The energy band diagram of the WS2/Al2O3/ZnO QDs device.

Figure S3 shows the energy band diagram of the $WS_2/Al_2O_3/ZnO$ QDs device. To confirm the non-radiative energy transfer in the WS_2/ZnO QDs heterojunction, we designed the $WS_2/Al_2O_3/ZnO$ QDs heterojunction. The wide bandgap Al_2O_3 acts as a barrier to inhibit the charge transfer between WS_2 and ZnO QDs. The bandgap of Al_2O_3 is much wider than that of monolayer WS_2 and ZnO QDs, which prevents charge transfer. As a result, the $WS_2/Al_2O_3/ZnO$ QDs device is only driven by non-radiative energy transfer.

Figure S3. Energy band diagram of the WS₂/Al₂O₃/ZnO QDs device.