Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Fig S1. EDS of Sr₃NaSbO₆: $0.001Bi^{3+}$, $0.007Mn^{4+}$.

Fig S2. XPS of Bi-4f and Mn-2p in Sr₃NaSbO₆:0.001Bi³⁺,0.007Mn⁴⁺.

Fig S3. DRS of $Sr_3NaSbO_6,\,Sr_3NaSbO_6{:}0.001Bi^{3+}\,and\,Sr_3NaSbO_6{:}0.001Bi^{3+},0.007Mn^{4+}.$

Fig S4. Fluorescence decay curves of Sr_3NaSbO_6 :0.001Bi³⁺,yMn⁴⁺ (y = 0 - 1.5 mol%).

	Day 1	Day 5	Day 10	Day 15
Group 1 Natural lighting				
Group 2 Natural lighting + LED lighting				

Fig S5. The growth status of mustard plants in Group 1 and Group 2 on days 1, 5, 10, and 15.

Chamical formula		Sr₃NaSbO ₆ :	
	SI 3INASDO6	0.001Bi,0.007Mn	
a/Å	9.764	9.757	
b/Å	9.764	9.757	
c/Å	11.600	11.604	
V/ų	957.848	956.634	
R _p /%	11.4	11.5	
R _{wp} /%	14.8	14.6	
χ^2	1.99	1.74	

Table S1. Refined parameters of Sr_3NaSbO_6 and Sr_3NaSbO_6:0.001Bi,0.007Mn.

No.	Phosphor	Emission	Thermal stability / %	<i>∆E</i> / eV	η _{QY} / %
		wavelength / nm			
1	$Li_6SrLa_2Sb_2O_{12}$:Mn ⁴⁺	705	<i>I</i> _{423K} / <i>I</i> _{273K} = 17.0	0.31	18.2
2	SrLaMgSbO ₆ :Mn ⁴⁺	705	I _{423К} /I _{298К} = 22.5	0.30	35.0
3	LaGeSbO ₆ :Mn ⁴⁺	700	I _{423K} /I _{298K} = 18.0	0.58	37.7
4	Sr₃NaSbO ₆ :Mn ⁴⁺	695	I _{423К} /I _{298К} = 39.8	0.35	56.2
5	Li ₃ Mg ₂ SbO ₆ :Mn ⁴⁺	651	I _{423К} /I _{303К} = 23.6	0.37	83.0
6	Ca ₂ YSbO ₆ :Mn ⁴⁺	680	I _{423К} /I _{303К} = 40.0	0.31	62.6
7	$Ca_2LaSbO_6:Mn^{4+}$	685	I _{423К} /I _{298К} = 17.1	0.35	52.2
8	Ba ₂ LaSbO ₆ :Mn ⁴⁺	678	I _{420К} /I _{300К} = 60.6	0.41	33.5
9	$Ca_2LuSbO_6:Mn^{4+}$	683	I _{423К} /I _{303К} = 48.0	0.25	39.1
10	Li ₄ AISbO ₆ :Mn ⁴⁺	673	I _{423K} /I _{298K} = 15.1	0.52	40.0
11	$Mg_2InSbO_6:Mn^{4+}$	665	I _{423К} /I _{303К} = 36.0	0.27	16.3
12	Ca ₂ InSbO ₆ :Mn ⁴⁺	693	I _{423К} /I _{298К} = 59.0	-	18.0
13	Sr ₂ InSbO ₆ :Mn ⁴⁺	699	I _{423К} /I _{298К} = 37.5	-	55.9
14	Sr₃NaSbO6:Bi ³⁺ ,Mn ⁴⁺	692	I _{423К} /I _{298К} = 48.2	0.36	76.1

	able S2. A comparison of the as-	synthesized phosphor with so	ome Mn4+-activated red-e	mitting phosphors
--	----------------------------------	------------------------------	--------------------------	-------------------