Supporting Information

Centimeter-Scale Gua₃SbBr₆ Single Crystals for White Light-

Emitting Diodes Enabled by Inhibition of Multi-Site Nucleation

Yongjiang Dou, Zirui Liu, Quanzhen Huang, Tiantian Shi, Sheng Wang* and Xuyong Yang*

Dr. Y. Dou, T. Shi and Prof. Q. Huang
School of Electrical and Information Engineering, Henan University of Engineering,
001 Xianghe Road, Zhengzhou 451191, China
E-mail: <u>douyongjiang@126.com</u>

Dr. Z. Liu, S. Wang and Prof. X. Yang

Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China E-mail: <u>nanocrystal@shu.edu.cn</u>, <u>yangxy@shu.edu.cn</u>

Figure S1: Schematic illustration of the solvent evaporation method of Gua₃SbBr₆ SC.

Figure S2: Photos of Gua_3SbBr_6 SC growth process without $Zn(Ac)_2$ and with different percentages of $Zn(Ac)_2$ (2%, 4%, 8% and 16%). (a) The initial precursor solution Photos of all samples. Photos of the precursor solution (b) without $Zn(Ac)_2$, (c) 2% $Zn(Ac)_2$, (d) 4% $Zn(Ac)_2$, (e) 8% $Zn(Ac)_2$ and (f) (d) 8% $Zn(Ac)_2$ under UV light after standing for 24 hours.

Figure S3: PL spectrum of Gua₃SbBr₆ SC untreated and treated with 2%, 4%, 8% and 16% Zn(Ac)_{2.}

Figure S4. XPS spectra of (a) whole XPS spectrum and (b) C 1s of both samples.

Figure S5. The corresponding Zn 2p XPS spectra of Gua₃SbBr₆ powers without and with 8% Zn(Ac)₂.

Figure S6. (a)The binding energies of DGP with Zn^{2+} , Br⁻, Sb³⁺. (b)The binding energies of Zn-Br and Sb-Br.

Figure S7. Calculated XRD patterns of Gua₃SbBr₆ SC, measured XRD patterns of precipitate and Standard XRD card of ZnBr₂ and Zn(Ac)₂.

Figure S8. (a)The PLE spectrum and (b) CIE coordinate of Gua₃SbBr₆ SC.

Figure S9. Raman spectrum of (a) Gua₃SbBr₆ and (b) organic Gua powers excited at

633 nm.

Figure S10. Variation of the relative PL intensities of the Gua_3SbBr_6 SC with 8% $Zn(Ac)_2$ placed (a) in a hotplate, (b) under UV light, and (c) prolonged exposure to the air with 70% humidity.

Empirical formula	$(C_{13}H_{13}N_3)_3Sb_1Br_6$	
Formula weight		
Temperature	150 K	
Wavelength	0.71073	
Crystal system	P-3	
Space group	R3	
Unit cell dimensions	a=16.7199 α=90°	
	b=16.7199 β=90°	
	c=14.1411 γ=120°	
volume	1238.02	
2θ range for data collection		
Reflections collected	4669	
Absorption correction	MULTI-SCAN	
Max and min transmission	0.009 0.028	
Refinement method	Full-matrix least-squares on F ²	

Table 1: Single-crystal X-ray diffraction data of a Gua₃SbBr₆ SC.

Emitter	PL peak (nm)	PLQY (%)	Power efficiency (lm/W)	CRI	Ref
(Gua-DPG) ₃ SbCl ₆	584	100%	-	86.5	1
Cs ₂ NaInCl ₆ :Sb ³⁺	605	92.4%	-	95.4	2
$Cs_2Cu_2Cl_5{:}Zn^{2+}$	522	70.19	-	95.8	3
Cs ₃ InCl ₆ :Sb ³⁺ /Mn ²⁺	620	51.38	-	85.5	4
(OTA) _{2+x} SnI _{4+x}	617	92	-	92	5
Cs ₂ NaInCl ₆ :Sb ³⁺ NCs	460	80.1	37.5	80	6
CsPbBr ₃ NCs	517	92	-	86	7
(DPG) ₃ SbBr ₆	611	100	48.6	89	This
					work

Table 2: The performance of the state-of-the-art perovskite-based WLEDs.

Reference

Hou, C.; Liu, X.; Wan, C.; Li, B.; Lu, T.; Ge, C.; Song, Y.; Wang, A.; Kang, Y.;
 Dong, Q. Designing Guanidine-Based Antimony Halides Luminescence Perovskite
 Crystals toward Near-Unity Quantum Yield. Chemistry of Materials 2023, 35 (24),
 10635-10644.

- (2) Li, J.; Sheng, Y.; Tong, G.; Zhu, H.; Tao, X.; Wu, C.; Chang, Y.; Tang, Z.; Yang,
- J.; Zhang, S.; et al. Anti-Solvent Synthesis of Three-Color Indium-Based Halide

Perovskite Microplate/Microcrystal Phosphors for High Color Rendering WLEDs. Advanced Optical Materials **2023**, 11 (16), 2300100.

(3) Peng, Y.; Guo, J.; Guo, J.; Wu, J.; Zhang, N.; Zhao, G.; Hou, J.; Zhang, G.; Liu, Y.; Fang, Y. Enhancement of photoluminescence quantum yield in lead-free inorganic copper-based halide perovskites via zinc doping. Journal of Materials Chemistry C 2024, 12 (33), 12874-12881, 10.1039/D4TC01168F.

(4) Sheng, Y.; Chen, P.; Gao, Y.; He, Y.; Li, J.; Muhammad; Xie, X.; Cheng, C.; Yang, J.; Chang, Y.; et al. Tunable Efficient White Emission of Sb³⁺/Mn²⁺ Co-Doped Lead-Free Perovskites for Single-Component White Light-Emitting Diodes. ACS Applied Materials & Interfaces **2024**, 16 (15), 19175-19183.

(5) Li, Z.; Deng, Z.; Johnston, A.; Luo, J.; Chen, H.; Dong, Y.; Sabatini, R.; Sargent,

E. H. Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solid-State Lighting. Advanced Functional Materials **2022**, 32 (18), 2111346.

(6) Li, X.; Wang, D.; Zhong, Y.; Jiang, F.; Zhao, D.; Sun, S.; Lu, P.; Lu, M.; Wang,Z.; Wu, Z.; et al. Halide Double Perovskite Nanocrystals Doped with Rare-Earth Ions

for Multifunctional Applications. Advanced Science 2023, 10 (20), 2207571.