## **Supporting Information**

## **Pressure-Induced Tunable Emission Colors and Irreversible Bandgap**

## Narrowing in Organic–Inorganic Manganese Bromide Hybrid

Ruijing Fu, <sup>a, e</sup> Junpeng Gao, <sup>a</sup> Pinsen Zhang, <sup>a</sup> Lingrui Wang, <sup>b</sup> Bo Wang, <sup>a, e</sup> Guangxia Wang,

<sup>a</sup> Xiaoshuang Li, <sup>\*a</sup> Youchao Kong, <sup>\*c</sup> Qingguang Zeng <sup>\*a, e</sup> and Guanjun Xiao <sup>\*d</sup>

<sup>a</sup> School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China.
E-mail: <u>ruijingfu\_wyu@163.com</u>; lixiaoshuang12@mails.ucas.ac.cn; zengqg1979@126.com
<sup>b</sup> Key Laboratory of Materials Physics of Ministry of Education, Zhengzhou University, Zhengzhou 450052, P. R. China

<sup>c</sup> Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng 224002, P.R. China

E-mail: yb87816@connect.um.edu.mo

<sup>d</sup> State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

E-mail: xguanjun@jlu.edu.cn

<sup>e</sup> Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020,
 Guangdong Province, P. R. China



Fig. S1. The crystal asymmetric structure of 0D  $(C_{24}H_{20}P)_2MnBr_4$ .



Fig. S2. The refinements ADXRD spectra of  $(C_{24}H_{20}P)_2MnBr_4$  SCs at 4.1 GPa.



Fig. S3 The refinements released ADXRD spectra of  $(C_{24}H_{20}P)_2MnBr_4$  SCs.



Fig. S4. The representative corresponding frequency shifts (a-c) of  $(C_{24}H_{20}P)_2MnBr_4$ SCs from 1atm to 20.0 GPa.



Fig. S5. The Raman spectra of  $(C_{24}H_{20}P)_2MnBr_4$  SCs at 1atm and released from 20.0 GPa.



Fig. S6 (a) PLE spectra of  $(C_{24}H_{20}P)_2$ MnBr<sub>4</sub> SCs from 250 to 470 nm. (b) Temperaturedependent PL spectra within the temperature range of 300-520 K of  $(C_{24}H_{20}P)_2$ MnBr<sub>4</sub> SCs. (c) *S* and  $\hbar \omega_{phonon}$  values for  $(C_{24}H_{20}P)_2$ MnBr<sub>4</sub> SCs through fitting the FWHM with temperature data. (d) Value of  $\Gamma_{op}$  for  $(C_{24}H_{20}P)_2$ MnBr<sub>4</sub> SCs by Toyozawa equation.



Fig. S7. The PLQY of  $(C_{24}H_{20}P)_2MnBr_4$  SCs exciting at  $\lambda_{ex} = 360$  nm.



Fig. S8. The decay curve of  $(C_{24}H_{20}P)_2MnBr_4$  SCs.



Fig. S9 The PL shift of  $(C_{24}H_{20}P)_2MnBr_4$  SCs under different pressure.



Fig. S10. The Mn-Br bond length changes as a function of pressure.

| Pressure (GPa) | X      | У      |
|----------------|--------|--------|
| 0              | 0.2607 | 0.5203 |
| 1.2            | 0.2861 | 0.4773 |
| 2.4            | 0.2776 | 0.5443 |
| 3.9            | 0.2815 | 0.5852 |
| 4.6            | 0.3198 | 0.5779 |
| 5.6            | 0.3972 | 0.5470 |
| 6.8            | 0.4210 | 0.5173 |
| 8.3            | 0.4510 | 0.4657 |
| 9.8            | 0.4117 | 0.3880 |

**Table S1**. The CIE chromaticity coordinates of  $(C_{24}H_{20}P)_2MnBr_4$  SCs under different pressures.