Supplementary information

Revealing the surface oxidation mechanism and performance evolution of Nd-Fe-B sintered magnets

Liang Zhou^a, Jiaying Jin^{a,b*}, Wang Chen^{a,b}, Shaoqing Ren^{a,b}, Mengfan Bu^a, Xu Li^a, Bo Xin^b, Chen Wu^a, and Mi Yan^{a,b,*}

^aSchool of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Novel Materials for Information Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China

^bState Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou 014030, China

*Corresponding authors. jinjy@zju.edu.cn (J. Jin); mse_yanmi@zju.edu.cn (M. Yan)

Fig. S1 Electrochemical equivalent circuit in impedance measurement for (a) the original Nd-Fe-B magnet, and (b) the oxidized magnets.

Fig. S2 Mechanical performance of (a) 0.5 h and (b) 3 h oxidized Nd-Fe-B magnets as a function of oxidation temperature, including Modulus and Hardness.

Fig. S3 Surface morphologies of (a) 550 °C-0.5 h, (b) 550 °C-3 h, (c) 650 °C-0.5 h and (d) 650 °C-3 h oxidized Nd-Fe-B magnets.

Fig. S4 Low-magnification surface morphologies of (a-d) 0.5 h and (e-f) 3 h oxidized Nd-Fe-B magnets at different temperatures: (a) 250 °C-0.5 h, (b) 450 °C-0.5 h, (c, d) 650 °C-0.5 h, (e) 250 °C-3 h, (f) 450 °C-3 h and (g, h) 650 °C-3 h.

Fig. S5 Cross-sectional BSE SEM image and corresponding EPMA elemental mappings of the 650 °C-0.5 h oxidized magnet.

Fig. S6 Focused ion beam-assisted preparation of the TEM sample from the different areas in the 650 °C-3 h oxidized magnet. (a) Region of interest (ROI 1) from the interface between the outmost surface zone A and the internal oxidation zone B in **Fig.** 7(a). (b) ROI 2 of the continuous and coarse grain boundary in the internal oxidation layer.

Fig. S7 STEM-EDS mappings for the continuous grain boundary region obtained from Fig. 9(a).

Samples	E _{corr} (V)	$I_{\rm corr}$ ($\mu {\rm A} \cdot {\rm cm}^{-2}$)	$R_{\rm s}$ ($\Omega \cdot {\rm cm}^2$)	$\begin{array}{c} Q_{c} \\ (F \cdot cm^{-2} \cdot s^{n-1}) \end{array}$	n _c	$R_{\rm c}$ ($\Omega \cdot { m cm}^2$)	$\begin{array}{c} Q_{\rm dl} \\ ({\rm F}{\cdot}{\rm cm}^{-2}{\cdot}{\rm s}^{{\rm n}{\rm -1}}) \end{array}$	n _{dl}	$R_{\rm ct}$ ($\Omega \cdot {\rm cm}^2$)	L (H·cm²)	$R_{\rm L}$ ($\Omega \cdot {\rm cm}^2$)
Original	-0.911	31.2	28.6	/	/	/	2.82×10^{-4}	0.710	1450	1558	594
250 °C	-0.852	10.8	30.7	1.06×10 ⁻⁴	0.773	12.2	6.87×10^{-5}	0.788	2527	/	/
350 °C	-0.854	7.3	31.6	2.45×10 ⁻⁴	0.812	22.1	4.87×10 ⁻⁹	0.775	4584	/	/
450 °C	-0.808	9.3	31.9	1.25×10 ⁻⁴	0.770	62.14	1.06×10 ⁻⁴	0.763	3328	/	/
550 °C	-0.808	10	32.5	1.06×10 ⁻⁴	0.766	277.8	2.26×10 ⁻⁴	0.769	2748	/	/
650 °C	-0.877	21.4	32.5	1.98×10^{-4}	0.830	543.0	1.37×10^{-4}	0.882	1475		

Table S1. Electrochemical parameters of the original and 0.5 h oxidized Nd–Fe–B magnets under different oxidation temperatures in 3.5% NaCl solution.

Table S2. Electrochemical parameters of the original and 3 h oxidized Nd–Fe–Bmagnets under different oxidation temperatures in 3.5% NaCl solution.

Samples	$E_{\rm corr}$ (V)	$I_{\rm corr}$ ($\mu {\rm A} \cdot {\rm cm}^{-2}$)	$R_{\rm s}$ ($\Omega \cdot { m cm}^2$)	$\frac{Q_{\rm c}}{({\rm F}\cdot{\rm cm}^{-2}\cdot{\rm s}^{\rm n-1})}$	n _c	$R_{\rm c}$ ($\Omega \cdot {\rm cm}^2$)	$Q_{\rm dl}$ (F·cm ⁻² ·s ⁿ⁻¹)	n _{dl}	$R_{\rm ct}$ (Ω ·cm ²)	L (H·cm ²)	$R_{\rm L}$ ($\Omega \cdot { m cm}^2$)
Original	-0.911	31.2	28.6	/	/	/	2.82×10-4	0.710	1450	1558	594
250 °C	-0.820	7.6	29.1	1.30×10 ⁻⁴	0.797	18.2	8.07×10 ⁻⁴	0.838	3356	/	/
350 °C	-0.840	7.9	35.5	1.36×10-4	0.742	23.3	3.75×10-4	0.768	3273	/	/
450 °C	-0.881	26.0	33.5	3.78×10-4	0.787	418.9	2.34×10-4	0.861	1469	/	/
550 °C	-0.884	29.8	37.8	1.71×10 ⁻⁴	0.718	100.9	9.46×10-4	0.726	1059	/	/
650 °C	-0.895	38.1	33.6	5.25×10 ⁻⁴	0.764	134.6	1.13×10 ⁻⁴	0.785	547	/	/