Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Material

Investigating the Effect of Hydrothermal Carbonisation Reaction Times on the Photoluminescence of Bio-Oil-Derived Carbon Polymer Dots

Lawrence. A. Bruce^a, Liam Desmond^b, Abigail A. Seddon^a, Leon Bowen^c, Greg A. Mutch^b, Anh N. Phan^b and Elizabeth. A Gibson^a

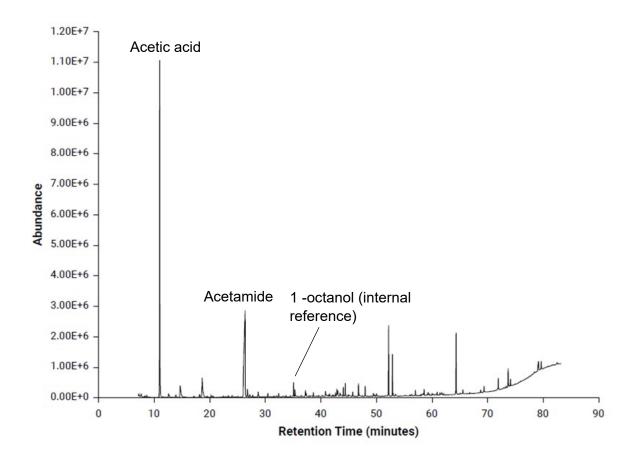
^a Energy Materials Laboratory, Bedson Building, Newcastle University, Edward's Walk, Newcastle upon Tyne NE1 8QB, UK

^b School of Engineering, Merz Court, University, Newcastle upon Tyne NE1 7RU, UK

 $^{\rm C}$ Durham University, Department of Physics, South Road, Co Durham, DH1 3LE, UK

Comment [LB(): 0009-0006-1785-5824 Comment [GM]: My ORCID is: 0000-

0002-7267-3234


Table S1: synthesis approaches, size, optical properties, and proposed mechanism of PL for CDs synthesised from chitosan and chitin.

Synthesis	Size (nm)	Proposed PL mechanism	λ _{max} (nm)	Quantum yield (%)	Lifetime (ns)	Reference
Chitosan Microwave, HTC 180 °C, 600W	2.1 1.0 - 3.5	Emission from the carbon core at short wavelengths Emission shifts red upon N and P doing	406 @ 320nm Excitation dependent	_	_	1
Chitosan HTC 190 °C, 15 h	7 4 - 11	Non-uniform size Surface emission sites	408 @ 330 nm Excitation dependent	16.61	-	2
Chitosan & p- phenylenediamine HTC 220 °C, 18 h	1.2 _ 2.6	Surface emissive sites Emission from carbon core	520 @ 390 nm Excitation independent	54	-	3
Chitosan HTC 200 °C, 10 h	2.13 0.5 - 4	C=O/C=N is the luminescence centre of CD Phosphorescence when immobilized in PVA	533 @ 457 nm Excitation dependent	38	CDs 1.24 (T1) 15.69 (T2) CDs- PVA 0.03 s (59.25%) 0.45 s (40.75%	4
Chitosan HTC	2 1 – 4	Non-uniform size Surface emission sites	410 @ 330 nm Excitation	_	_	5

180 °C, 24 h			dependent			
Chitosan and κ- carrageenan HTC 220 ∘C, 18 h	8 4 – 20	Surface emission sites	420 @ 365 nm Excitation dependent	59	3.75 (т1) 11.39 (т2)	6
Chitosan HTC 180°C, 5h	2 - 4	-	430 @ 330 nm Excitation dependent	18.9	-	7
Chitosan HTC 180 °C 12 h	5 4 – 7	Surface emissive states	400 @ 280 nm Excitation dependent	-	-	8
Chitosan Chitin HTC EtOH 200 °C, 6h	8.31 ± 0.3 14.1 ± 2.4	Emission from the hybridised carbon core Surface emissive sites	 ≈440 @ 360 nm ≈450 @ 380 nm Excitation dependent 	13.4 11.6	-	9
Chitosan HTC 200 °C, 12 h Chitin	4.68 ± 1.09	Non-uniform size Surface emissive sites Surface emissive	400 @ 320 nm Excitation dependent 430 @ 360	54	3.2 (т1) 7.87 (т2) 0.48 (т3)	10
HTC 240°C, 10h	1 - 7	sites	nm Excitation dependent			
Chitin Microwave HTC 180°C ,1000 W	2 - 12	-	480 @ 370 nm Excitation dependent	5.1	-	12
Chitin HTC 200°C, 8h	2 - 8	-	405 @ 330 nm Excitation dependent	25.8	-	13

 Table S2: Yields of products from the pyrolysis of chitin.

Temperature (°C)	Bio-char (wt %)	Bio-oil (wt %)	Gas (wt %)
450 °C	31.3	36.4	32.3
700 °C	34.5	50.1	15.4

Figure S1: a) GC-MS Analysis (Single Quadrupole) of bio-oil from pyrolysis at 700 °C with a heating rate of with a heating rate of 10 °C/ min in acetyl nitrile with 1-octaonol as an internal reference.

Table S3: Composition of of bio-oil obtained from pyrolysis of chitin at 700 $^{\circ}$ C with a heating rate of with a heating rate of 10 $^{\circ}$ C/ min in an inert environment.

Name	Retention	Quantifier ion	Qualifier ion
	time (min)	(<i>m/z</i>)	(<i>m/z</i>)
Propane nitrile	8.3	54	28
Acetic acid	10.8	43	60
Oxazole,2,4-dimethyl	12.6	97	42
Pyrazine	13.9	80	53
Pyridine	14.7	79	52
Propanoic acid	17.1	74	73
2-methyl pyridine	18.8	93	66
2,6-Lutidine	22.4	107	32
Acetamide	26.4	59	44
2-Acetylfuran	27.7	95	110
N-Methylacetamide	28.7	43	73
1-octanol (internal	35.1	56	70
reference)			
1,2-Cyclopentanedione, 3-	35.3	112	55
methyl-			
2-Methylbenzoxazole	37.2	133	64
2-Acetyl pyrrole	38.6	94	109
4-methylphenol	41.3	108	107
4-amino pyridine	42.9	94	67
Piconol	44.0	108	109
Ethanone, 1-(1-methyl-1H-	44.4	108	123
pyrrol-2-yl)-			
3-Hydroxy-2-	45.7	109	80
methylpyridine			
5- Hydroxy-2-	47.9	109	80
methylpyridine			
2-Acetamidophenol	49.4	109	151
3-Acetamidopyridine	64.3	94	136

Table S4: GC-MS analysis of products identified in the organic phase during the purification of nitrogen-doped carbon polymer dots (N-CPDs). Following hydrothermal carbonization (HTC) at 200°C for 2 hours (2H-CPD), the N-CPDs were filtered, centrifuged, and washed with ether. The resulting organic phase was then analysed by GC-MS. The sample was prepared in acetonitrile, with isoamyl ether and methyl laurate used as internal standards.

Name	Retention time (min)	Quantifier ion (<i>m/z</i>)	Qualifier ion (<i>m/z</i>)
Isoamyl ether (internal standard)	13.9	70	43
3-Methyl-2-cyclopenten-1- one	20.0	96	67
3-Methyl-2-cyclopenten-1- one	23.4	112	55
Phenol	23.4	94	66
3-Aminopyridine	30.9	94	67
3-Pyridinol, 2-methyl-	34.5	109	80
3-Hydroxypyridine	35.6	96	41
2(1H)-Pyridinone, 3,6- dimethyl-	35.7	123	94
Phenol, 4-amino-	36.7	109	80
2,6-Dimethoxyphenol	39.5	154	139
Methyl Laurate (internal standard)	41.7	74	87
3-Acetamidopyridine	52.1	94	136
1,2,3-Benzenetriol	55.6	126	52
2-Acetamidophenol	56.2	109	151
3-Deoxy-D-gluconic acid	61.1	44	54

Table S5: GC-MS analysis of products identified in the organic phase during the purification of N-CPDs. Following hydrothermal carbonization (HTC) at 200°C for 4 hours (4H-CPD), the N-CPDs were filtered, centrifuged, and washed with ether. The resulting organic phase was then analysed by GC-MS. The sample was prepared in acetonitrile, with isoamyl ether and methyl laurate used as internal standards.

Name	Retention	Quantifier ion	Qualifier ion
	time (min)	(<i>m/z</i>)	(<i>m/z</i>)
Propanoic acid	5.4	74	73
2-methyl Pyridine	5.9	93	66
Isoamyl ether (internal	13.8	43	70
standard)			
Acetamide	14.1	59	44
2,3-Dimethylpyridine	14.5	107	106
2-Acetylfuran	15.2	95	110
N-Methylacetamide	16.9	43	73
2-Ethyl-6-methylpyrazine	17.4	121	122
2,3,5-Trimethylpyrazine	17.6	122	42
2,4,6-Trimethylpyridine	17.8	121	120
2,3-Dimethyl-2-	19.6	67	110
cyclopenten-1-one			
3-Methyl-2-cyclopenten-1-	19.9	112	55
one			
2-Cyclopenten-1-one, 2-	23.4	112	69
hydroxy-3-methyl-			
Phenol	26.0	94	66
3-Aminopyridine	30.8	94	67
3-methyl-2(1H)-	34.5	80	109
Pyridinone,			
6-methyl-3-Pyridinol	36.7	109	80
Methyl Laurate (internal	41.7	74	87
standard)			
<u>3-Acetamidopyridine</u>	51.9	94	136
2-Methylbenzimidazole	52.5	132	131
2-acetamidophenol	52.6	109	151

Table S6: GC-MS analysis of products identified in the organic phase during the purification of N-CPDs. Following hydrothermal carbonization (HTC) at 200°C for 8 hours (8H-CPD), the N-CPDs were filtered, centrifuged, and washed with ether. The resulting organic phase was then analysed by GC-MS. The sample was prepared in acetonitrile, with isoamyl ether and methyl laurate used as internal standards.

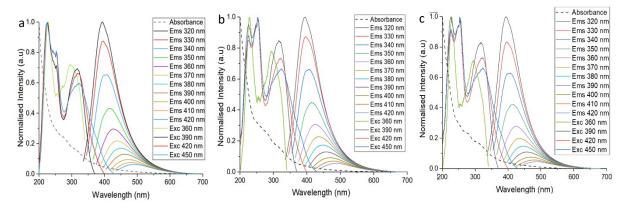
Name	Retention time (min)	Quantifier ion (<i>m/z</i>)	Qualifier ion (<i>m/z</i>)
2-methyl-Pyridine	5.9	93	66
lsoamyl ether (internal standard)	13.9	43	70
3-Methyl-2-cyclopenten-1- one	19.9	96	67
2,3-dimethyl-2- Cyclopenten-1-one,	23.1	67	110
Phenol	26.0	94	66
2-Methyl-5-(1- propenyl)pyrazine	28.9	133	134
3-Aminopyridine	30.8	94	67
Benzenamine, 4-methoxy-	32.4	108	123
3-amino phenol	34.4	109	80
3-Pyridinol	35.2	95	32
4-amino phenol	36.6	109	80
Methyl Laurate (internal standard)	41.6	74	87
2-Acetylpyrrole	43.3	94	109
Hydroquinone	44.5	110	81
3-Acetamidopyridine	51.9	94	136
2-acetamidophenol	56.2	109	151

Time (h)	Bio-char (wt %)	N-CPD (wt %)	Overall yield from chitin (wt %)
2	3.3	3.5	1.8
4	4.4	2.2	1.1
8	12.2	8.8	4.5

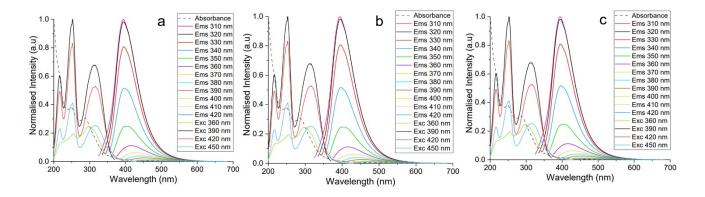
 Table S7:
 Yields of bio-char and N-CPDs at different HTC holding times

Quantum yield calculation:

The quantum yield was calculated at an excitation wavelength of 320 nm relative to quinine sulphate in 0.5 M H_2SO_4 which has a quantum yield of 0.54.


$$\Phi_X = \Phi_R * \frac{I}{I_R} * \frac{OD_R}{OD} * \frac{n^2}{n_R^2}$$

 ϕ = quantum yield of sample (X) or reference (R)


I = integrated fluorescence

n = refractive index of solvent

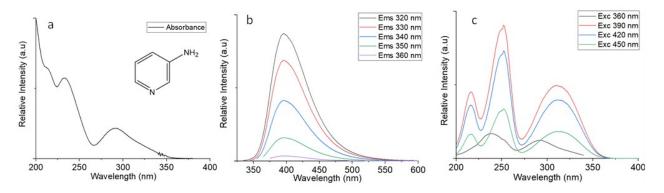

OD = absorbance at excitation wavelength

Figure S2: Optical properties of N-CPD dispersed in deionised water and sonicated for 20 minutes. a) 2H-CPD absorbance (dashed line), excitation (left) and emission (right). b) 4H-CPD c) 8H-CPD.

Figure S3 Optical properties of the impurity fraction isolated after the 2-hour HTC dispersed in deionised water and sonicated for 20 minutes. a) 2H-CPD isolated impurity absorbance (dashed line), excitation (left) and emission (right). b) 4H-CPD isolated impurity c) 8H-CPD isolated impurity.

Figure S4: 3-aminopyridene was dissolved in deionised water a) absorbance, b) excitation-photoluminescence and c) excitation spectra.

References

- 1 Q. Wu, S. Zhang, S. Li, Y. Yan, S. Yu, R. Zhao and L. Huang, *Nano Res.*, 2023, **16**, 1835–1845.
- 2 C. D. Yaqian Feng, Ruxue Li, Peng Zhou, *Microchem. J.*, 2022, **180**, 107627–107636.
- 3 X. Z. Jiyao Xu, Quan Qi, Lili Sun, Xiangjun Guo, Hongmei Zhang, *J. Alloys Compd.*, 2022, **908**, 164519.
- 4 Y. J. eyan Ni, Pingyan Zhou, Qiwen Jiang, Qi Zhang, Xingyu Huang, *Dye. Pigment.*, 2022, **197**, 109923.
- 5 M. M. F. C. Xiaojuan Gong, Wenjing Lu, Man Chin Paau, Qin Hu, Xin Wu, Shaomin Shuang, Chuan Dong, *Anal. Chim. Acta*, 2015, **861**, 74–84.
- 6 Z. X. Xu J, Wang Y, Sun L, Qi Q, *Int. J. Biol. Macromol.*, 2021, **191**, 1221–1227.
- 7 X. W. Yinyin Chen, Chenxi Zhao, Yanying Wang, Hanbing Rao, Zhiwei Lu, Changfang Lu, Zhi Shan, Bi Ren, Wei Wu, *Mater. Sci. Eng.*, 2020, **117**, 111264.
- 8 Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu, *Chem. Commun.*, 2012, **48**, 380–382.
- 9 J. Briscoe, A. Marinovic, M. Sevilla, S. Dunn and M. Titirici, *Angew. Chemie Int. Ed.*, 2015, **54**, 4463–4468.
- 10 Z. Liang, M. Kang, G. F. Payne, X. Wang and R. Sun, *ACS Appl. Mater. Interfaces*, 2016, **8**, 17478–17488.
- 11 P. Z. Qiwen Jiang, Yi jing, Yeyan Ni, Ruoshi Gao, *Microchem. J.*, 2020, **157**, 105111.
- 12 M. A. Tina Naghdi, Mojgan Atashi, Hamed Golmohammadi, Iman Saeedi, *J. Ind. Eng. Chem.*, 2017, **52**, 162–167.
- 13 H. W. Gangaraju Gedda, Chun-Yi Lee, Yu-Chih Lin, *Sensors Actuators B Chem.*, 2016, **224**, 396–403.