# Supplementary material: Unveiling the Microscopic Origins and Thermoelectric Performance of full-Heusler compounds $K_2RbSb$ and $Rb_2KSb$

Peipei Liu,<br/>¹ Yinchang Zhao,<br/>1,\* Jun Ni,<br/>2,3 and Zhenhong Dai<br/>1, $^\dagger$ 

<sup>1</sup>Department of Physics, Yantai University, Yantai 264005, People's Republic of China <sup>2</sup>State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China <sup>3</sup>Frontier Science Center for Quantum Information, Beijing 100084, People's Republic of China (Dated: December 31, 2024) PACS numbers: 65.40.-b, 66.70.-f, 63.20.-e, 72.20.-i

Keywords: full-Heusler compound, first-principles calculation, transport properties, thermoelectric properties

## A. Supplementary Calculation Detail.

#### 1. Thermal Transport

In our calculations, the HA IFCs were captured using the finite displacement method. Specifically, we included all HA IFCs within the supercell and used a displacement distance of  $\Delta x=0.01$  Å. Additionally, non-harmonic IFCs were trained based on CSLD techniques. To obtain the displacement and force data sets required for nonharmonic (cubic and quartic) IFCs, we used 4000-step ab initio molecular dynamics (AIMD) simulations, capturing 80 Snapshots at 300 K with a time step of 2 fs. On this basis, we added a random displacement of 0.1 Å to each atom of the 80 snapshots and obtained 80 quasirandom configurations, then derived anharmonic IFCs .

The group velocity of phonon mode **qj** is given by

$$v_{\mathbf{q}\mathbf{j}} = \frac{\partial w_{\mathbf{q}\mathbf{j}}}{\partial \mathbf{q}} \tag{S1}$$

The mode  $Gr\ddot{u}$  neisen parameter, defined as

$$\gamma_{\mathbf{qj}} = -\frac{\partial \log w_{\mathbf{qj}}}{\partial \log V} \tag{S2}$$

## 2. Electron Transport

For electron transport properties, five scattering mechanisms were considered, including ADP, POP, IMP, PIE, and MFP scattering. These were calculated from first-principlesderived material parameters. In particular, The differential scattering rate from state  $|n\mathbf{k}\rangle$  to state  $|m\mathbf{k} + \mathbf{q}\rangle$  is calculated using Fermi's golden rule as

$$\widetilde{\tau}_{n\mathbf{k}\to m\mathbf{k}+\mathbf{q}}^{-1} = \frac{2\pi}{\hbar} \mid g_{nm}(\mathbf{k},\mathbf{q}) \mid^2 \delta(\varepsilon_{n\mathbf{k}} - \varepsilon_{m\mathbf{k}+\mathbf{q}})$$
(S3)

where  $\varepsilon_{n\mathbf{k}}$  is the energy of state  $|n\mathbf{k}\rangle$ , and  $g_{nm}(\mathbf{k}, \mathbf{q})$  is the matrix element for scattering from state  $|n\mathbf{k}\rangle$  into  $|m\mathbf{k} + \mathbf{q}\rangle$  state.

The acoustic deformation potential matrix element is given by

$$g_{nm}^{ADP}(\mathbf{k},\mathbf{q}) = \sqrt{k_B T} \sum_{\mathbf{G}\neq-\mathbf{q}} \left[ \frac{\widetilde{\mathbf{D}}_{nk} : \hat{\mathbf{S}}_l}{c_{l\sqrt{\rho}}} + \frac{\widetilde{\mathbf{D}}_{nk} : \hat{\mathbf{S}}_{t_1}}{c_{t_1\sqrt{\rho}}} + \frac{\widetilde{\mathbf{D}}_{nk} : \hat{\mathbf{S}}_{t_2}}{c_{t_2\sqrt{\rho}}} \right] \left\langle m\mathbf{k} + \mathbf{q} \mid e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} \mid n\mathbf{k} \right\rangle$$
(S4)

where  $\widetilde{\mathbf{D}}_{nk} = \mathbf{D}_{nk} + \mathbf{v}_{nk} \otimes \mathbf{v}_{nk}$  in which  $\mathbf{D}_{nk}$  is the rank 2 deformation potential tensor,  $\hat{\mathbf{S}} = \hat{\mathbf{q}} \otimes \hat{\mathbf{u}}$  is the unit strain associated with an acoustic mode,  $\mathbf{u}$  is the unit vector of phonon polarization, and the subscripts l,  $t_1$  and  $t_2$  indicate properties belonging to the longitudinal and transverse modes.

The piezoelectric differential scattering rate is given by

$$g_{nm}^{PIE}(\mathbf{k},\mathbf{q}) = \sqrt{k_B T} \sum_{\mathbf{G}\neq-\mathbf{q}} \left[ \frac{\hat{\mathbf{n}}\mathbf{h} : \hat{\mathbf{S}}_l}{c_{l\sqrt{\rho}}} + \frac{\hat{\mathbf{n}}\mathbf{h} : \hat{\mathbf{S}}_{t_1}}{c_{t_1\sqrt{\rho}}} + \frac{\hat{\mathbf{n}}\mathbf{h} : \hat{\mathbf{S}}_{t_2}}{c_{t_2\sqrt{\rho}}} \right] \frac{\left\langle m\mathbf{k} + \mathbf{q} \mid e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} \mid n\mathbf{k} \right\rangle}{\mid \mathbf{q} + \mathbf{G} \mid}$$
(S5)

where **h** is the full piezoelectric stress tensor and  $\hat{\mathbf{n}} = (\mathbf{q} + \mathbf{G})/|\mathbf{q} + \mathbf{G}|$  is a unit vector in the direction of scattering.

The polar optical phonon differential scattering rate is given by

$$g_{nm}^{POP}(\mathbf{k},\mathbf{q}) = \left[\frac{\hbar\omega_{po}}{2}\right]^{1/2} \sum_{\mathbf{G}\neq-\mathbf{q}} \left(\frac{1}{\hat{n}\cdot\epsilon_{\infty}\cdot\hat{n}} - \frac{1}{\hat{n}\cdot\epsilon_{s}\cdot\hat{n}}\right) \frac{\left\langle m\mathbf{k}+\mathbf{q} \mid e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} \mid n\mathbf{k}\right\rangle}{\mid \mathbf{q}+\mathbf{G}\mid}$$
(S6)

where  $\epsilon_s$  and  $\epsilon_{\infty}$  are the static and high-frequency dielectric tensors and  $\omega_{po}$  is the polar optical phonon frequency. To capture scattering from the full phonon band structure in a single phonon frequency, each phonon mode is weighted by the dipole moment it produces.

The ionized impurity matrix element is given by

$$g_{nm}^{IMP}(\mathbf{k},\mathbf{q}) = \sum_{\mathbf{G}\neq-\mathbf{q}} \frac{n_{imp}^{1/2} Ze}{\hat{n} \cdot \epsilon_s \cdot \hat{n}} \frac{\langle m\mathbf{k} + \mathbf{q} \mid e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} \mid n\mathbf{k} \rangle}{|\mathbf{q} + \mathbf{G}|^2 + \beta^2}$$
(S7)

where Z is the charge state of the impurity center,  $n_{imp}$  is the concentration of ionized impurities (i.e.,  $C \times (n_{holes} - n_{electrons})/Z$  where C is the amount of charge compensation), and  $\beta$  is the inverse screening length, defined as

$$\beta^2 = \frac{e^2}{\epsilon_s \kappa_B T} \int \frac{\mathrm{d}\varepsilon}{V} D(\varepsilon) f(1-f) \tag{S8}$$

where V is the unit cell volume, D is the density of states, and f is the Fermi–Dirac distribution given in the transport properties section.

The effective phonon frequency is determined from the phonon frequencies  $\omega_{\mathbf{q}\nu}$  (where  $\nu$  is a phonon branch and  $\mathbf{q}$  is a phonon wave vector) and eigenvectors  $\mathbf{e}_{\kappa\nu}(\mathbf{q})$  (where  $\kappa$  is an

atom in the unit cell). In order to capture scattering from the full phonon band structure in a single phonon frequency, each phonon mode is weighted by the dipole moment it produces according to

$$\omega_{\nu} = \sum_{\kappa} \left[ \frac{1}{M_{\kappa} \omega_{q\nu}} \right]^{1/2} \times \left[ \mathbf{q} \cdot \mathbf{Z}_{\kappa}^* \cdot \mathbf{e}_{\kappa\nu}(\mathbf{q}) \right]$$
(S9)

where  $\mathbf{Z}_{\kappa}^{*}$  is the Born effective charge. This naturally suppresses the contributions from transverse-optical and acoustic modes in the same manner as the more general formalism for computing Frölich based electron-phonon coupling.

The weight is calculated only for  $\Gamma$ -point phonon frequencies and averaged over the full unit sphere to capture both the polar divergence at  $\mathbf{q} \to 0$  and any anisotropy in the dipole moments. The effective phonon frequency is calculated as the weighted sum over all  $\Gamma$ -point phonon modes according to

$$\omega_{po} = \frac{\omega_{\Gamma\nu} w_{\nu}}{\sum_{\nu} w_{\nu}} \tag{S10}$$

Finally, we solve for the electronic BTE using the band gap value calculated by the HSE06 function as input. The following is a representation of the electron transport parameters tensor Seebeck coefficient(S), electrical conductivity( $\sigma$ ), and electronic thermal conductivity( $\kappa_e$ )

$$S^{\alpha\beta} = \frac{\int \Sigma_{\alpha\beta}(\varepsilon)(\varepsilon - \varepsilon_F) \left[ -\frac{\partial f^0}{\partial \varepsilon} \right] d\varepsilon}{eT \int \Sigma_{\alpha\beta}(\varepsilon) \left[ -\frac{\partial f^0}{\partial \varepsilon} \right] d\varepsilon}$$
(S11)

$$\sigma^{\alpha\beta} = e^2 \int \Sigma_{\alpha\beta}(\varepsilon) \left[ -\frac{\partial f^0}{\partial \varepsilon} \right] d\varepsilon$$
 (S12)

$$\kappa_{e}^{\alpha\beta} = \left\{ \frac{\left(\int \Sigma_{\alpha\beta}(\varepsilon)(\varepsilon - \varepsilon_{F}) \left[ -\frac{\partial f^{0}}{\partial \varepsilon} \right] \right)^{2} d\varepsilon}{T \int \Sigma_{\alpha\beta}(\varepsilon) \left[ -\frac{\partial f^{0}}{\partial \varepsilon} \right] d\varepsilon} - \frac{1}{T} \int \Sigma_{\alpha\beta}(\varepsilon)(\varepsilon - \varepsilon_{F})^{2} \left[ \frac{\partial f^{0}}{\partial \varepsilon} \right] d\varepsilon \right\}$$
(S13)

Among them, e, T,  $\varepsilon_F$ ,  $\Sigma_{\alpha\beta}(\varepsilon)$  and  $f^0$  are the electron charge, absolute temperature, certain doped Fermi level, spectral conductivity and Fermi-Dirac distribution function respectively. Spectral conductivity is defined as

$$\Sigma_{\alpha\beta}(\varepsilon) = \sum_{n} \int \frac{d\mathbf{k}}{8\pi^3} v_{n\mathbf{k}}^{\alpha} v_{n\mathbf{k}}^{\beta} \tau_{n\mathbf{k}} \delta(\varepsilon - \varepsilon_{n\mathbf{k}})$$
(S14)

in which, n is the electron band index, **k** stands the wave vector,  $\alpha$  and  $\beta$  represent Cartesian coordinates,  $v_{n\mathbf{k}}$  is the energy,  $v_{n\mathbf{k}}^{\alpha(\beta)}$  denote the electron group velocity.

We give the deformation potential of these two materials calculated using AMSET software as follows:

(1) The Valence band maximum of  $K_2RbSb$  band: 29-30

k-point: 
$$\begin{bmatrix} 0.00 & 0.00 & 0.00 \end{bmatrix}$$
; deformation potential:  $\begin{bmatrix} 1.81 & 1.31 & 1.31 \\ 1.31 & 1.81 & 1.31 \\ 1.31 & 1.31 & 1.81 \end{bmatrix}$ 

band: 
$$31-32$$
  
k-point:  $\begin{bmatrix} 0.00 & 0.00 & 0.00 \end{bmatrix}$ ; deformation potential:  $\begin{bmatrix} 1.80 & 1.37 & 1.37 \\ 1.37 & 1.80 & 1.37 \\ 1.37 & 1.37 & 1.80 \end{bmatrix}$ 

| (2) The Conduction band minimum of $K_2RbSb$                                         |      |      |      |
|--------------------------------------------------------------------------------------|------|------|------|
| band: 33-34                                                                          | -    |      | -    |
|                                                                                      | 2.01 | 0.03 | 0.03 |
| k-point: $\begin{bmatrix} 0.00 & 0.00 & 0.00 \end{bmatrix}$ ; deformation potential: | 0.03 | 2.01 | 0.03 |
|                                                                                      | 0.03 | 0.03 | 2.01 |

| (3) The Valence band maximum of $Rb_2KSb$                                            |                      |
|--------------------------------------------------------------------------------------|----------------------|
| band: 31-32                                                                          |                      |
|                                                                                      | 1.90 0.00 0.00       |
| k-point: $\begin{bmatrix} 0.00 & 0.50 & 0.50 \end{bmatrix}$ ; deformation potential: | 0.00 0.50 0.14       |
|                                                                                      | $0.00 \ 0.14 \ 0.50$ |

(4) The Conduction band minimum of  $Rb_2KSb$ band: 33-34 k-point:  $\begin{bmatrix} 0.00 \ 0.00 \ 0.00 \end{bmatrix}$ ; deformation potential:  $\begin{bmatrix} 1.45 \ 0.02 \ 0.02 \\ 0.02 \ 1.45 \ 0.02 \\ 0.02 \ 1.45 \end{bmatrix}$ 

# B. Supplementary Figures and Tables.



Fig. S1. (Color online). The k-point convergence test for (a) K<sub>2</sub>RbSb and (b) Rb<sub>2</sub>KSb.



Fig. S2. (Color online). The AIMD simulations for (a) K<sub>2</sub>RbSb and (b) Rb<sub>2</sub>KSb.



**Fig. S3**. (Color online). The phase diagram of K-Rb-Sb from the Open Quantum Materials Database (OQMD).



**Fig. S4**. (Color online). The 2D projected electron localization function (ELF) in (110) plane for (a)  $K_2RbSb$  and (b)  $Rb_2KSb$ . The (011) plane of (c)  $K_2RbSb$  and (d)  $Rb_2KSb$ , the distances from the origin are 6.01 Åand 6.10 Å



**Fig. S5**. (Color online). The scattering rate (SRs) and scattering phase space of 3ph and 4ph were calculated by SCP approximation at 300 K for K<sub>2</sub>RbSb and Rb<sub>2</sub>KSb.



**Fig. S6**. (Color online). The scattering rate (SRs) of 3ph, 4ph and the ratio of SRs at 300 K and 600 K for K<sub>2</sub>RbSb and Rb<sub>2</sub>KSb.



**Fig. S7**. (Color online). The temperature dependent atomic mean square displacements (MSD) of (a) K<sub>2</sub>RbSb, and (b) Rb<sub>2</sub>KSb were calculated by HA and SCP method.



**Fig. S8**. (Color online). The electron band structure using HSE06 method with SOC for (a) K<sub>2</sub>RbSb and (b) Rb<sub>2</sub>KSb.



Fig. S9. (Color online). The comparison of harmonic phonon dispersion between different supercells of K<sub>2</sub>RbSb and Rb<sub>2</sub>KSb.

|           | К      | Rb     | $\operatorname{Sb}$ |  |
|-----------|--------|--------|---------------------|--|
| $RbK_2Sb$ | 0.8558 | 1.2121 | -2.9236             |  |
| $Rb_2KSb$ | 1.3955 | 0.7461 | -2.8878             |  |

TABLE S1. Born Effective Charge  $(Z^*)$ 



Fig. S10. (Color online). The phonon spectra at 300 K and lattice thermal conductivity of  $Rb_2KSb$  and  $K_2RbSb$  obtained based on the high-order force constants extracted at different cutoff radius.

\* y.zhao@ytu.edu.cn

 $^{\dagger}$  zhdai@ytu.edu.cn

| material |                       | $\mathrm{Rb}\mathrm{K}_{2}\mathrm{Sb}$ |                                        |                       | $Rb_2KSb$  |                                        |
|----------|-----------------------|----------------------------------------|----------------------------------------|-----------------------|------------|----------------------------------------|
| Т        | $\kappa_L^{coherent}$ | $\kappa_L$                             | $\kappa_L^{coherent}/\kappa_L^{Total}$ | $\kappa_L^{coherent}$ | $\kappa_L$ | $\kappa_L^{coherent}/\kappa_L^{Total}$ |
| 100 K    | 0.0060                | 1.3057                                 | 0.0045                                 | 0.1177                | 0.8528     | 0.1213                                 |
| 200 K    | 0.0103                | 0.6809                                 | 0.0149                                 | 0.0516                | 0.3823     | 0.1189                                 |
| 300 K    | 0.0131                | 0.5592                                 | 0.0228                                 | 0.0480                | 0.3129     | 0.1330                                 |
| 400 K    | 0.0145                | 0.4287                                 | 0.0327                                 | 0.0418                | 0.2744     | 0.1322                                 |
| 500 K    | 0.0158                | 0.3696                                 | 0.0409                                 | 0.0389                | 0.2548     | 0.1324                                 |
| 600 K    | 0.0166                | 0.3072                                 | 0.0512                                 | 0.0379                | 0.2299     | 0.1415                                 |

TABLE S2. The lattice thermal conductivity and its coherent term.

TABLE S3. The band effective masses  $(m^*)$ .

| material      | RbK <sub>2</sub> Sb |                |                | <sub>2</sub> Sb Rb <sub>2</sub> KSb |                             |                |                |
|---------------|---------------------|----------------|----------------|-------------------------------------|-----------------------------|----------------|----------------|
| K-Path        | $\Gamma \to K$      | $\Gamma \to L$ | $\Gamma \to X$ | $\mathbf{X} \to \Gamma$             | $\mathbf{X} \to \mathbf{U}$ | $\Gamma \to K$ | $\Gamma \to L$ |
| Hole(VBM)     | $-9.313m_0$         | $-2.475m_0$    | $-13.489m_0$   | $-3.929m_0$                         | $-3.333m_0$                 |                |                |
| Electron(CBM) | $0.182m_0$          | $0.178m_0$     | $0.192m_0$     |                                     |                             | $0.179m_0$     | $0.178m_0$     |