SUPPORTING INFORMATION

Experimental evidences of the excited-state mixing in the blue emitter

for organic light emitting diodes

Vladyslav Ievtukhov,^{1,2} Michał Mońka,¹ Olga Ciupak,³ Irena Bylińska,² Piotr Bojarski,¹ Karol

Krzymiński,² Illia E. Serdiuk^{1*}

¹ Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland

² Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

³ Department of Organic Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

Contents

- Section 1. Determination of photophysical parameters
- Section 2. Computational determination of the nature of excited states
- Section 3. Additional spectroscopic data
- Section 4. Time-resolved emission spectra
- Section 5. Quantum chemical calculations

Section 1. Determination of photophysical parameters

The parameters of photophysical processes were calculated using equations described in the literature[S1,S2].

PL decay curves showed in Figure 4 (main text) were fitted with the multiexponential equation:

$$I(t) = A_0 + \sum_{i=1}^{n} A_i exp(-t/\tau_i),$$
(S1)

where A_i is the pre-exponential factor, τ_i is the decay time and I(t) is emission intensity. Average lifetimes of prompt (τ_{PF}) and delayed fluorescence (τ_{DF}) were determined using formula:

$$\tau_{PF, DF} = \sum_{i=1}^{n} f_i \tau_i, \tag{S2}$$

where f_{i} is fractional contribution of *i*-th component expressed as:

$$f_i = \frac{A_i \tau_i}{\sum_{i=1}^n A_i \tau_i}.$$
(S3)

The ratio of DF and PF quantum yields $\varphi_{DF}/\varphi_{PF}$ was determined as following:

$$\frac{\varphi_{DF}}{\varphi_{PF}} = \frac{A_{DF}\tau_{DF}}{A_{PF}\tau_{PF}},\tag{S4}$$

where A_{DF} and A_{PF} are pre-exponential factors of delayed and prompt fluorescence, respectively. Rate constants of radiative (k_r) and nonradiative (k_{nr}) decay and intersystem crossing (k_{ISC}) were given by equations:

$$k_r = \frac{\varphi_{PF}}{\tau_{PF}},\tag{S5}$$

$$k_{ISC} = \frac{\varphi_{DF}}{\varphi \tau_{PF}},$$
(S6)

$$k_{nr} = \frac{1}{\tau_{PF}} - \left(k_r + k_{ISC}\right),\tag{S7}$$

where φ is PLQY $(\varphi_{DF} + \varphi_{PF})$. Further, the quantum yields for ISC and rISC were calculated as

$$\varphi_{ISC} = k_{ISC} \tau_{PF}, \tag{S8}$$

$$\varphi_{rISC} = \frac{1 - \varphi_{PF}/\varphi}{\varphi_{ISC}}.$$
(S9)

Finally, rate constant for rISC (k_{rISC}) was calculated as

$$k_{rISC} = \frac{\varphi_{rISC}}{\tau_{DF}} \left(\frac{\varphi}{\varphi_{PF}} \right).$$
(S10)

Thus obtained photophysical parameters are presented in Table 1, main text.

Section 2. Additional spectroscopic data

Figure S1. Absorbance and fluorescence spectra of TMCz-BO in methylcyclohexane (MCH) solution.

Figure S2. Fluorescence spectra of **TMCz-BO** and acceptor fragment **BO** in MCH solution at room temperature

Figure S3. Phosphorescence spectra of **TMCz-BO** and the acceptor molecule **BO** in MCH frozen glass at 77K.

Figure S4. Phosphorescence spectra of TMCz-BO in chlorobenzene, benzene and DCE frozen solutions at 77K

Figure S5. Phosphorescence spectra of **TMCz-BO** in frozen DMSO and the TMCz donor at 77K.

Table S1. Linear regression parameters for the fitted linear dependencies Figure 3, main text.

Parameter	Plot B	Plot D	Plot C	Plot E	Plot F
	$\ln k_r$ vs. E_{SI}	$\ln k_{rISC}$ vs. E_{SI}	$\ln k_{\rm ISC}$ vs. E_{SI}	$\ln k_{rISC}$ vs. k_r	$k_{\rm ISC}$ vs. $k_{\rm r}$
Slope	2.65 ± 0.34	-1.16 ± 0.09	-4.14 ± 0.87	-0.72 ± 0.07	-1.76 ± 0.27
Intercept	7.91 ± 1.01	18.34 ± 0.26	28.03 ± 2.59	15.45 ± 0.06	21.84 ± 2.16
R ²	0.953	0.984	0.882	0.97	0.933

Section 3. Computational determination of the nature of excited states

Figure S6. Profiles of molecular orbitals calculated using various levels of theory; for clarity only one sign of wave function is shown.

Figure S6. continued

Figure S6. continued

Section 4. Time-resolved emission spectra

Figure S7. TRES of TMCz-BO in ZNX film (0.1%, *w/w*) at RT, vacuum.

Figure S8. TRES of TMCz-BO in DPEPO film (10%, w/w) at RT, vacuum

Figure S9. TRES of TMCz-BO in PMMA film (0.1%, w/w) at RT, vacuum.

Figure S10. PL spectra of TMCz-BO in doped films at 15 K with a delay time of 1 ms.

Comparison of TMCz-BO spectra in the MCH solvent and ZNX host

Table S2. Full-width at half-maximum (FWHM) values in MCH solution and ZNX film

	Fluorescence		Phosphorescence		
	[nm]	[eV]	[nm]	[eV]	
MCH	35	0.26	34	0.23	
ZNX	41	0.29	66	0.41	

PL spectra in MCH solution vs. ZNX film

Figure S11. Fluorescence (RT) and phosphorescence (15K) spectra in MCH solution and ZNX film.

Section 5. Quantum Chemical Calculations

Calculations of electronic parameters and rISC values

For the calculations of k_{rISC} values Marcus-Hush equation [S3] was used

$$k = \frac{V^2}{\hbar} \sqrt{\frac{\pi}{k_{\rm B} T \lambda}} \exp\left[-\frac{(\Delta E_{\rm ST} + \lambda)^2}{4k_{\rm B} T \lambda}\right]$$
(1)

where:

k is a rate constant

V is the SOC constant

 λ is the sum of internal and external (λ_{solv}) reorganization energies for the respective transition ΔE_{ST} is an energy gap between singlet and triplet state

 $k_{\rm B}$ is the Boltzmann constant

 \hbar is the reduced Planck's constant

T is the temperature (298.15 K).

On the B3LYP/cc-pVDZ level of theory, the value of the $\Delta E_{3CT\rightarrow 1CT}$ energy gap was predicted of 4.5 meV for the 90° rotamer. Deviation of θ from the optimal value causes the increase of $\Delta E_{3CT\rightarrow 1CT}$ values as shown in Table S6. To take this into account, the statistically weighted $\Delta E_{3CT\rightarrow 1CT}$ was calculated using population of each θ -rotamer given by Boltzmann distribution at room temperature using respective energies of species (Table S4, S5). To describe the rISC dynamics in solutions, θ -rotamer population in the T₁ (³CT) state geometry was used. The statistically weighted $\Delta E_{(3CT\rightarrow 1CT)w}$ value of 7.8 meV was obtained as described below. The calculated reorganization energies (Table S7) and SOC constants (Table S8) at various θ are presented below.

The $\Delta E_{3CT\rightarrow 1CT}$ values in various solvents were estimated using the $k_r(E_{S1})$ dependence as described in [S2]. Specifically, DFT calculations predicted PL_{max} of 526 nm matching well the experimental value of 519 nm obtained for the DCE solution (Table 1, main text). The abovementioned $\Delta E_{3CT\rightarrow 1CT}$ value of 7.8 meV was thus ascribed to the DCE medium. Taking into account linear dependence of k_r on the S₁ energy (Figure 3B) and ln(k_{rISC}) on k_r (Figure 3D), linear correlation between k_r and $\Delta E_{3CT\rightarrow 1CT}$ was assumed. Therefore, $\Delta E_{3CT\rightarrow 1CT}$ for other solvents were estimated by proportion using experimental k_r values (Table S3). For each medium, statistically weighted $k_{3CT\rightarrow 1CT}$ rate constants were obtained (Table S3) using Marcus-Hush equation (1) for each θ -rotamer via three approaches. As described below, these approaches use different SOC constants, and the same set of $\Delta E_{(3CT\rightarrow 1CT)}(\theta)$ and $\lambda(\theta)$ for each medium.

	$E_{\rm S1}$	$k_{\rm r}$	$\Delta E_{(3\text{CT}\to 1\text{CT})\text{w}},$		$\ln(k_{\rm T1-S1})_{\rm w}{}^a$	exper	$V_{\rm w}$ variable, ^d
	[ev]	[10 ° s ¹]	mev	$V_{\rm w} = V_{\rm 3CT-1CT}$	$V_{\rm w} = 0.44 {\rm ~cm^{-1}}$	$(V_{\rm w} \text{ is a variable})$	[cm ⁻¹]
Tol/Hex	3.19	11.0	15.6	13.01	14.39	14.7	0.051
Benz.	3.04	8.7	12.3	13.29	14.64	14.8	0.049
ClBenz.	2.99	8.4	11.9	13.33	14.68	14.9	0.048
DCE	2.86	5.5	7.8	13.75	15.11	15.1	0.045
DMSO	2.75	3.5	5.0	14.14	15.41	15.1	0.038
E_{S1} – ener	rgy of	the S ₁ stat	te obtained ex	perimentally	from PL _{onset} ;		

Table S3. Summary of estimation of $\Delta E_{(3CT \rightarrow 1CT)w}$, $\ln(k_{T1-S1})_w$, and V_w for different media.

 $\Delta E_{(3CT \rightarrow 1CT)w}$ – statistically weighted energy gap between ³CT and ¹CT states obtained by DFT

calculations (for DCM) or using proportion:

 $\Delta E_{(3\text{CT}\rightarrow 1\text{CT})\text{w}} \text{ ($ *i* $-solvent)} = k_r(i)^* \Delta E_{(3\text{CT}\rightarrow 1\text{CT})\text{w}}(\text{DCM}) / k_r(\text{DCM});$

^{*a*} statistically weighted rISC constants calculated using 1) $V_{3\text{CT-1CT}}$ predicted for each θ -rotamer (Approach 1); 2) *V* values giving a statistically weighted V_w value of 0.44 cm⁻¹ (Approach 2), or 3) variable *V* values obtained from the reconstruction of experimental k_{rISC} values (Approach 3);

^b statistically weighted variable V values obtained from the reconstruction of experimental k_{rISC} values using $\Delta E_{(3CT \rightarrow 1CT)w}$;

note that in all calculations, the external reorganization energy was equal to $\Delta E_{(3CT \rightarrow 1CT)}$ for each θ -rotamer.

Dependence of electronic parameters on the dihedral angle between donor and acceptor

fragments (θ)

	Energies of electronic states								
	rela	ative to the o	ptimal geom	etry in the sa	me state [eV]				
<i>θ</i> [°]	S ₀	¹ CT	¹ LE _A	³ CT	³ LE _A	³ LE _D			
60	0.27	0.57	0.26	0.48	0.28	0.20			
65	0.15	0.37	0.14	0.30	0.16	0.21			
70	0.082	0.23	0.071	0.18	0.086	0.14			
75	-	-	0.034	0.094	0.042	0.059			
77	0.039	0.10	-	0.069	-	-			
80	0.015	0.056	0.014	0.040	0.017	0.026			
82	0.0091	0.034	-	0.025	0.010	0.013			
84	0.0048	0.019	-	0.014	0.0054	0.0076			
85	-	-	0.0036	-	-	-			
86	0.0020	0.0078	-	0.0058	0.0020	0.0038			
88	0.0008	0.0019	0.0	0.00	0.00019	0.0015			
90	0.0000	0.0000	0.00030	0.0058	0.0	0.00			
92	0.0008	0.0019	0.0	0.014	0.00019	0.0015			
94	0.0020	0.0078	-	0.025	0.0020	0.0038			
95	-	-	0.0036	-	-	-			
96	0.0048	0.019	-	0.040	0.0054	0.0076			
98	0.0091	0.034	-	0.069	0.010	0.013			
100	0.015	0.056	0.014	0.094	0.017	0.026			
103	0.039	0.10	-	0.18	-	-			
105	-	-	0.034	0.30	0.042	0.059			
110	0.082	0.23	0.071	0.48	0.086	0.14			
115	0.15	-	0.14	-	0.16	0.21			
120	0.27	-	0.26	-	0.28	0.20			

Table S4. Relative energies of the species with various θ value in various electronic states.

]	Population o	f rotamers, <i>p</i>) [%]	
<i>θ</i> [°]	S ₀	¹ CT	¹ LE _A	³ CT	³ LE _A	³ LE _D
60	2.39×10 ⁻⁶	3.14×10 ⁻¹¹	6.55×10 ⁻⁶	9.54×10 ⁻¹⁰	2.30×10 ⁻⁶	5.46×10 ⁻⁵
65	2.67×10-4	9.03×10 ⁻⁸	4.90×10 ⁻⁴	1.18×10-6	2.35×10-4	2.44×10 ⁻⁵
70	4.41×10 ⁻³	2.47×10-5	6.69×10 ⁻³	1.40×10-4	3.82×10 ⁻³	1.08×10-3
75	-	-	2.89×10 ⁻²	3.63×10 ⁻³	2.08×10 ⁻²	1.19×10 ⁻²
77	2.31×10 ⁻²	2.76×10 ⁻³	-	9.87×10 ⁻³	-	-
80	5.85×10 ⁻²	1.85×10 ⁻²	6.33×10 ⁻²	3.00×10 ⁻²	5.58×10 ⁻²	4.82×10 ⁻²
82	7.38×10 ⁻²	4.42×10 ⁻²	-	5.36×10 ⁻²	7.20×10 ⁻²	6.86×10 ⁻²
84	8.74×10 ⁻²	7.97×10 ⁻²	9.37×10 ⁻²	8.35×10 ⁻²	8.72×10 ⁻²	9.06×10 ⁻²
86	9.76×10 ⁻²	1.21×10 ⁻¹	-	1.14×10 ⁻¹	9.95×10 ⁻²	1.09×10 ⁻¹
88	0.1×10 ⁻¹	1.52×10 ⁻¹	1.08×10 ⁻¹	1.34×10 ⁻¹	1.07×10 ⁻¹	1.17×10 ⁻¹
90	1.05×10-1	1.64×10 ⁻¹	1.06×10-1	1.43×10-1	1.08×10 ⁻¹	1.20×10-1
92	1.02×10-1	1.52×10-1	1.08×10-1	1.34×10 ⁻¹	1.07×10 ⁻¹	1.17×10 ⁻¹
94	9.76×10-2	1.21×10-1	9.37×10-2	1.14×10 ⁻¹	9.95×10-2	1.09×10 ⁻¹
96	8.74×10 ⁻²	7.97×10 ⁻²	-	8.35×10 ⁻²	8.72×10 ⁻²	9.06×10 ⁻²
98	7.38×10 ⁻²	4.42×10 ⁻²	-	5.36×10 ⁻²	7.20×10 ⁻²	6.86×10 ⁻²
100	5.85×10 ⁻²	1.85×10-2	6.33×10 ⁻²	3.00×10-2	5.58×10 ⁻²	4.82×10 ⁻²
103	2.31×10 ⁻²	2.76×10 ⁻³	-	9.87×10-3	-	-
105	-	-	2.89×10 ⁻²	3.63×10-3	2.08×10 ⁻²	1.19×10 ⁻²
110	4.41×10-3	2.47×10 ⁻⁵	6.69×10 ⁻³	1.40×10 ⁻⁴	3.82×10-3	1.08×10-3
115	2.67×10-4	-	4.90×10-4	-	2.35×10-4	2.44×10 ⁻⁵
120	2.39×10-6	-	4.64×10-6	-	2.30×10 ⁻⁶	5.46×10-5

Table S5. Population (p) of species with various θ value

		Energy gap [eV]	
θ [°]	¹ CT- ³ CT	¹ CT- ³ LE _A	¹ CT- ³ LE _D
60	0.10	0.30	0.20
65	0.074	0.21	0.15
70	0.053	0.14	0.11
77	0.028	0.082	0.070
80	0.019	0.036	0.033
82	0.013	0.023	0.020
84	0.0092	0.013	0.012
86	0.0065	0.0059	0.006
88	0.0048	0.0018	0.00017
90	0.0045	0.000074	0.0013
92	0.0048	0.0018	0.00017
94	0.0065	0.0059	0.0061
96	0.0092	0.013	0.012
98	0.013	0.023	0.020
100	0.019	0.036	0.033
103	0.028	0.082	0.070
110	0.053	0.14	0.11
115	0.074	0.21	0.15
120	0.10	0.30	0.20

Table S6. Calculated singlet-triplet energy gaps between selected states as a function of θ .

		Internal reorganization energy [eV]							
θ[°]		TMCz-BO		DMA	C-TRZ				
	¹ CT- ³ CT	$^{1}\text{CT-}^{3}\text{LE}_{\text{A}}$	$^{1}\text{CT-}^{3}\text{LE}_{\text{D}}$	¹ CT- ³ CT	$^{1}\text{CT-}^{3}\text{LE}_{\text{A}}$				
60	0.0038	0.046	0.095	-	-				
65	0.0025	0.079	0.080	0.15	0.23				
70	0.0018	0.10	0.10	0.10	0.22				
75	0.0011	0.12	0.12	0.062	0.22				
80	0.00063	0.13	0.13	0.032	0.21				
82	0.00047	0.13	0.13	0.023	0.21				
84	0.00033	0.13	0.13	0.016	0.21				
86	0.00021	0.14	0.14	0.011	0.21				
88	0.00014	0.14	0.14	0.0076	0.21				
90	0.0	0.14	0.14	0.0066	0.21				
92	0.00014	0.14	0.14	0.0076	0.21				
94	0.00021	0.14	0.14	0.011	0.21				
96	0.00033	0.13	0.13	0.016	0.21				
98	0.00047	0.13	0.13	0.023	0.21				
100	0.00063	0.13	0.13	0.032	0.21				
105	0.0011	0.12	0.12	0.062	0.22				
110	0.0018	0.10	0.10	0.10	0.22				
115	0.0025	0.079	0.080	0.15	0.23				
120	0.0038	0.046	0.095	-	-				

Table S7. Calculated internal reorganization energies for selected spin-flip transitions in TMCz-BO and DMAC-TRZ as a function of θ .

			SOC	C [cm ⁻¹]		
θ[°]	¹ CT≓ ³ CT	$^{1}CT \rightleftharpoons ^{3}LE_{A}$	$^{1}CT \rightleftharpoons ^{3}LE_{D}$	¹ LE _A <i>≓</i> ³ CT	$^{1}LE_{A} \rightleftharpoons ^{3}LE_{A}$	$^{1}LE_{A} \rightleftharpoons ^{3}LE_{D}$
60	0.11	0.18	0.10	0.18	0.019	0.040
65	0.10	0.16	0.15	0.18	0.014	0.030
70	0.090	0.13	0.16	0.17	0.0075	0.020
77	0.070	0.12	0.17	0.17	0.0025	0.0080
80	0.050	0.11	0.17	0.16	0.0	0.0060
82	0.040	0.11	0.17	0.16	0.0	0.0040
84	0.030	0.11	0.17	0.16	0.0	0.0030
86	0.020	0.11	0.17	0.16	0.0	0.0020
88	0.010	0.10	0.17	0.16	0.0	0.0
90	0.0	0.10	0.17	0.16	0.0	0.0
92	0.010	0.10	0.17	0.16	0.0	0.0
94	0.020	0.11	0.17	0.16	0.0	0.0020
96	0.030	0.11	0.17	0.16	0.0	0.0030
98	0.040	0.11	0.17	0.16	0.0	0.0040
100	0.050	0.11	0.17	0.16	0.0	0.0060
103	0.070	0.12	0.17	0.17	0.0025	0.0080
110	0.090	0.13	0.16	0.17	0.0075	0.020
115	0.10	0.16	0.15	0.18	0.014	0.030
120	0.11	0.18	0.10	0.18	0.019	0.040

 Table S8. Calculated SOC constants for various transitions and values.

Medium:	edium: DCE. $\Delta E_{3CT \rightarrow 1CT}(\theta)$ as calculated. $V = V_{3CT-1CT}$								
θ °		$\Delta E_{3CT \rightarrow 1CT}$		λ_{in}	λ_{sum}			V	
deviation	p_{T1}	[eV]	$\Delta E_{3\text{CT}\to 1\text{CT}} * p_{\text{T1}}$	[eV]	[eV]	$k_{\rm rISC} [\rm s^{-1}]$	$k_{\rm rISC}*p_{\rm T1}$	[cm ⁻¹]	<i>V</i> * <i>p</i> _{T1}
±30	1.95×10-9	0.096	1.9×10 ⁻¹⁰	0.004	0.096	2.27×10-5	4.41×10 ⁻⁴	0.11	2.1×10 ⁻¹⁰
±25	2.41×10-6	0.074	1.8×10 ⁻⁷	0.003	0.074	4.95×10-5	1.19	0.10	2.4×10-7
±20	2.87×10 ⁻⁴	0.053	1.5×10 ⁻⁵	0.002	0.053	1.09×10 ⁻⁶	3.13×10 ⁻²	0.09	2.6×10-5
±15	7.40×10 ⁻³	0.033	2.5×10 ⁻⁴	0.001	0.033	1.76×10 ⁻⁶	1.30×10 ⁻⁴	0.07	5.2×10 ⁻⁴
± 10	6.1×10 ⁻²	0.018	1.1×10 ⁻³	0.001	0.018	2.26×10-6	1.38×10 ⁻⁵	0.05	3.1×10 ⁻³
± 8	0.11	0.013	1.4×10 ⁻³	0.000	0.013	2.04×10 ⁻⁶	2.23×10 ⁻⁵	0.04	4.4×10 ⁻³
± 6	0.17	0.009	1.6×10 ⁻³	0.000	0.009	1.58×10 ⁻⁶	2.68×10 ⁻⁵	0.03	5.1×10 ⁻³
± 4	0.23	0.006	1.5×10 ⁻³	0.000	0.006	9.30×10 ⁻⁵	2.16×10-5	0.02	4.6×10-3
±2	0.27	0.005	1.3×10 ⁻³	0.000	0.005	2.87×10-5	7.87×10 ⁻⁴	0.01	2.7×10-3
0	0.15	0.004	6.5×10 ⁻⁴	0.000	0.004	0	0	0	0
SUM	1.000		0.0078				9.37×10 ⁻⁵		0.020

Approach 1. V_w is constant equal to $V_{(3CT \rightarrow 1CT)w}$; $V_w = 0.02 \text{ cm}^{-1}$ (selected examples)

Medium: Tol/Hex. Each $\Delta E_{3CT \rightarrow 1CT}(\theta)$ is divided by constant b = 0.502 to attain $\Delta E_{(3CT \rightarrow 1CT)w} = 15.6 \text{ meV}$. $V = V_{3CT-1CT}$

		501 101							
θ °		$\Delta E_{3CT \rightarrow 1CT}$		λ_{in}	$\lambda_{ m sum}$			V	
deviation	p_{T1}	[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	[eV]	[eV]	$k_{\rm rISC} [{\rm s}^{-1}]$	$k_{\rm rISC}*p_{\rm T1}$	[cm ⁻¹]	V^*p_{T1}
±30	1.95×10-9	0.191	3.7×10 ⁻¹⁰	0.004	0.191	3.98×10-3	7.74×10-6	0.11	2.1×10 ⁻¹⁰
±25	2.41×10-6	0.148	3.6×10-7	0.003	0.148	2.00×10-4	4.83×10 ⁻²	0.10	2.4×10-7
±20	2.87×10-4	0.105	3.0×10 ⁻⁵	0.002	0.105	1.01×10-5	0.3	0.09	2.6×10-5
±15	7.40×10-3	0.067	4.9×10 ⁻⁴	0.001	0.067	3.44×10 ⁻⁵	2.54×10-3	0.07	5.2×10-4
± 10	6.1×10 ⁻²	0.035	2.2×10 ⁻³	0.001	0.035	8.05×10 ⁻⁵	4.93×10 ⁻⁴	0.05	3.1×10 ⁻³
± 8	0.11	0.026	2.8×10 ⁻³	0.000	0.026	8.72×10 ⁻⁵	9.54×10 ⁻⁴	0.04	4.4×10 ⁻³
± 6	0.17	0.018	3.1×10 ⁻³	0.000	0.018	7.82×10 ⁻⁵	1.33×10 ⁻⁵	0.03	5.1×10 ⁻³
± 4	0.23	0.013	3.0×10 ⁻³	0.000	0.013	5.13×10 ⁻⁵	1.19×10 ⁻⁵	0.02	4.6×10 ⁻³
±2	0.27	0.010	2.6×10 ⁻³	0.000	0.010	1.69×10 ⁻⁵	4.63×10 ⁻⁴	0.01	2.7×10 ⁻³
0	0.15	0.009	1.3×10 ⁻³	0.000	0.009	0	0	0.00	0
SUM	1.000		0.0156				4.46×10 ⁻⁵		0.0205

Medium: DMSO. Each $\Delta E_{3CT \rightarrow 1CT}(\theta)$ is divided by constant b = 1.58 to attain $\Delta E_{(3CT \rightarrow 1CT)w} = 5.0 \text{ meV}$. $V = V_{3CT-1CT}$

θ °		$\Delta E_{3CT \rightarrow 1CT}$		$\lambda_{ m in}$	$\lambda_{ m sum}$			V	
deviation	p_{T1}	[eV]	$\Delta E_{3\rm CT \to 1\rm CT} * p_{\rm T1}$	[eV]	[eV]	$k_{\rm rISC}$ [s ⁻¹]	$k_{\rm rISC}*p_{\rm T1}$	[cm ⁻¹]	V^*p_{T1}
±30	1.95×10-9	0.061	1.2×10 ⁻¹⁰	0.004	0.061	1.12×10-6	2.18×10-3	0.11	2.1×10 ⁻¹⁰
±25	2.41×10-6	0.047	1.1×10 ⁻⁷	0.003	0.047	1.79×10 ⁻⁶	4.33	0.10	2.4×10 ⁻⁷
±20	2.87×10-4	0.033	9.6×10 ⁻⁶	0.002	0.033	2.92×10-6	8.36×10 ⁻²	0.09	2.6×10-5
±15	7.40×10-3	0.021	1.6×10 ⁻⁴	0.001	0.021	3.57×10-6	2.64×10-4	0.07	5.2×10-4
± 10	6.1×10 ⁻²	0.011	6.9×10 ⁻⁴	0.001	0.011	3.66×10-6	2.24×10-5	0.05	3.1×10 ⁻³
± 8	0.11	0.008	9.0×10 ⁻⁴	0.000	0.008	3.08×10-6	3.37×10-5	0.04	4.4×10-3
± 6	0.17	0.006	1.0×10 ⁻³	0.000	0.006	2.26×10-6	3.85×10-5	0.03	5.1×10 ⁻³
± 4	0.23	0.004	9.5×10 ⁻⁴	0.000	0.004	1.28×10-6	2.97×10-5	0.02	4.6×10-3
±2	0.27	0.003	8.4×10 ⁻⁴	0.000	0.003	3.87×10-5	1.06×10-5	0.01	2.7×10-3
0	0.15	0.003	4.1×10 ⁻⁴	0.000	0.003	0	0	0.00	0
SUM	1.000		0.0050				1.38×10 ⁻⁶		0.0205

Approach 2. V_w is constant and higher than $V_{3CT\rightarrow 1CT}$; $V_w = 0.044 \text{ cm}^{-1}$ (selected examples) Medium: DCE. $\Delta E_{3CT\rightarrow 1CT}(\theta)$ as calculated. To each $V_{3CT-1CT}(\theta)$ a constant value c = 0.021 is added to attain $V_w = 0.044 \text{ cm}^{-1}$

θ°	p_{T1}	$\Delta E_{3CT \rightarrow 1CT}$		λ_{in}	λ_{sum}	7 5 17	7	V	Tak
deviation		[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	[eV]	[eV]	$k_{\rm rISC} [\rm s^{-1}]$	$k_{\rm rISC} p_{\rm T1}$	[cm ⁻¹]	V^*p_{T1}
±30	1.95×10 ⁻⁹	0.096	1.9×10 ⁻¹⁰	0.004	0.096	3.22×10 ⁻⁵	6.26×10 ⁻⁴	0.13	2.5×10 ⁻¹⁰
±25	2.41×10-6	0.074	1.8×10^{-7}	0.003	0.074	7.24×10 ⁻⁵	1.75	0.12	2.9×10 ⁻⁷
±20	2.87×10-4	0.053	1.5×10 ⁻⁵	0.002	0.053	1.66×10-6	4.76×10 ⁻²	0.11	3.2×10-5
±15	7.40×10 ⁻³	0.033	2.5×10-4	0.001	0.033	2.98×10-6	2.20×10-4	0.09	6.7×10-4
± 10	6.1×10 ⁻²	0.018	1.1×10 ⁻³	0.001	0.018	4.56×10-6	2.79×10-5	0.07	4.3×10-3
± 8	0.11	0.013	1.4×10 ⁻³	0.000	0.013	4.74×10 ⁻⁶	5.18×10-5	0.06	6.7×10 ⁻³
± 6	0.17	0.009	1.6×10 ⁻³	0.000	0.009	4.56×10-6	7.76×10-5	0.05	8.7×10-3
±4	0.23	0.006	1.5×10 ⁻³	0.000	0.006	3.91×10-6	9.06×10-5	0.04	9.5×10-3
±2	0.27	0.005	1.3×10 ⁻³	0.000	0.005	2.76×10-6	7.56×10-5	0.03	8.5×10-3
0	0.15	0.004	6.5×10 ⁻⁴	0.000	0.004	1.34×10-6	1.94×10 ⁻⁵	0.02	5.8×10-3
SUM	1.000		0.0078				3.45×10-6		0.044

Medium: Tol/Hex. Each $\Delta E_{3CT \rightarrow 1CT}(\theta)$ divided by constant b = 0.502 to attain $\Delta E_{(3CT \rightarrow 1CT)w} = 15.6$ meV. To each $V_{3CT-1CT}(\theta)$ a constant value c = 0.021 is added to attain $V_w = 0.044$ cm⁻¹

θ °		$\Delta E_{3CT \rightarrow 1CT}$		$\lambda_{ m in}$	$\lambda_{ m sum}$			V	
deviation	p_{T1}	[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	[eV]	[eV]	$k_{\rm rISC} [\rm s^{-1}]$	$k_{\rm rISC}*p_{\rm T1}$	[cm ⁻¹]	V^*p_{T1}
±30	1.95×10-9	0.191	3.7×10 ⁻¹⁰	0.004	0.191	5.64×10-3	1.10×10 ⁻⁵	0.13	2.5×10 ⁻¹⁰
±25	2.41×10 ⁻⁶	0.148	3.6×10 ⁻⁷	0.003	0.148	2.93×10 ⁻⁴	7.07×10 ⁻²	0.12	2.9×10 ⁻⁷
±20	2.87×10 ⁻⁴	0.105	3.0×10 ⁻⁵	0.002	0.105	1.54×10 ⁻⁵	4.41×10 ⁻¹	0.11	3.2×10 ⁻⁵
±15	7.40×10 ⁻³	0.067	4.9×10 ⁻⁴	0.001	0.067	5.81×10 ⁻⁵	4.30×10 ⁻³	0.09	6.7×10 ⁻⁴
± 10	6.1×10 ⁻²	0.035	2.2×10 ⁻³	0.001	0.035	1.62×10 ⁻⁶	9.94×10 ⁻⁴	0.07	4.3×10 ⁻³
± 8	0.11	0.026	2.8×10-3	0.000	0.026	2.03×10-6	2.22×10-5	0.06	6.7×10 ⁻³
± 6	0.17	0.018	3.1×10 ⁻³	0.000	0.018	2.26×10-6	3.85×10-5	0.05	8.7×10-3
± 4	0.23	0.013	3.0×10 ⁻³	0.000	0.013	2.15×10-6	5.00×10-5	0.04	9.5×10-3
±2	0.27	0.010	2.6×10-3	0.000	0.010	1.62×10-6	4.45×10-5	0.03	8.5×10-3
0	0.15	0.009	1.3×10-3	0.000	0.009	7.97×10 ⁻⁵	1.16×10-5	0.02	5.8×10 ⁻³
SUM	1.000		0.0156				1.77×10-6		0.044

Medium: DMSO. Each $\Delta E_{3CT \rightarrow 1CT}(\theta)$ is divided by constant b = 1.58 to attain $\Delta E_{(3CT \rightarrow 1CT)w} = 5.0$ meV. To each $V_{3CT-1CT}(\theta)$ a constant value c = 0.021 is added to attain $V_w = 0.044$ cm⁻¹

θ°		$\Delta E_{3CT \rightarrow 1CT}$		λ _{in}	λ_{sum}			V	
deviation	$p_{ m T1}$	[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	[eV]	[eV]	$k_{\rm rISC} [\rm s^{-1}]$	$k_{\rm rISC}*p_{\rm T1}$	[cm-1]	V^*p_{T1}
±30	1.95×10-9	0.061	1.2×10 ⁻¹⁰	0.004	0.061	1.59×10-6	3.09×10-3	0.13	2.5×10 ⁻¹⁰
±25	2.41×10-6	0.047	1.1×10 ⁻⁷	0.003	0.047	2.63×10-6	6.33	0.12	2.9×10-7
±20	2.87×10-4	0.033	9.6×10 ⁻⁶	0.002	0.033	4.44×10-6	1.27×10-3	0.11	3.2×10-5
±15	7.40×10-3	0.021	1.6×10 ⁻⁴	0.001	0.021	6.03×10-6	4.46×10-4	0.09	6.7×10-4
± 10	6.1×10 ⁻²	0.011	6.9×10 ⁻⁴	0.001	0.011	7.39×10 ⁻⁶	4.52×10-5	0.07	4.3×10-3
± 8	0.11	0.008	9.0×10 ⁻⁴	0.000	0.008	7.17×10-6	7.84×10-5	0.06	6.7×10 ⁻³
± 6	0.17	0.006	1.0×10 ⁻³	0.000	0.006	6.54×10-6	1.11×10-6	0.05	8.7×10-3
± 4	0.23	0.004	9.5×10-4	0.000	0.004	5.39×10-6	1.25×10-6	0.04	9.5×10-3
±2	0.27	0.003	8.4×10 ⁻⁴	0.000	0.003	3.72×10-6	1.02×10-6	0.03	8.5×10-3
0	0.15	0.003	4.1×10 ⁻⁴	0.000	0.003	1.79×10-6	2.60×10-5	0.02	5.8×10-3
SUM	1.000		0.0050				4.92×10-6		0.044

Approach 3. V_w is dependent on the medium. variable. (selected examples)

Medium: DCE. $\Delta E_{3CT \rightarrow 1CT}(\theta)$ as calculated. To each $V_{3CT-1CT}(\theta)$ a constant value	c = 0.0213
is added to attain $V_{\rm w} = 0.045 \text{ cm}^{-1}$	

								V	
θ °		$\Delta E_{3CT \rightarrow 1CT}$		λ_{in}	λ_{sum}			[cm ⁻	
deviation	$p_{ m T1}$	[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	[eV]	[eV]	$k_{\rm rISC} [\rm s^{-1}]$	$k_{\rm rISC}*p_{\rm T1}$	1]	V^*p_{T1}
±30	1.95×10-9	0.096	1.9×10 ⁻¹⁰	0.004	0.096	3.23×10-5	6.29×10 ⁻⁴	0.13	2.6×10 ⁻¹⁰
±25	2.41×10-6	0.074	1.8×10 ⁻⁷	0.003	0.074	7.28×10-5	1.76	0.12	2.9×10-7
±20	2.87×10-4	0.053	1.5×10 ⁻⁵	0.002	0.053	1.67×10-6	4.79×10 ⁻²	0.11	3.2×10 ⁻⁵
±15	7.40×10-3	0.033	2.5×10-4	0.001	0.033	3.00×10-6	2.22×10-4	0.09	6.8×10 ⁻⁴
± 10	6.1×10 ⁻²	0.018	1.1×10 ⁻³	0.001	0.018	4.60×10-6	2.81×10-5	0.07	4.4×10 ⁻³
± 8	0.11	0.013	1.4×10 ⁻³	0.000	0.013	4.78×10-6	5.23×10-5	0.06	6.7×10 ⁻³
± 6	0.17	0.009	1.6×10 ⁻³	0.000	0.009	4.61×10-6	7.85×10-5	0.05	8.7×10 ⁻³
± 4	0.23	0.006	1.5×10 ⁻³	0.000	0.006	3.96×10-6	9.19×10 ⁻⁵	0.04	9.6×10-3
±2	0.27	0.005	1.3×10 ⁻³	0.000	0.005	2.81×10-6	7.71×10 ⁻⁵	0.03	8.6×10-3
0	0.15	0.004	6.5×10-4	0.000	0.004	1.37×10-6	2.00×10-5	0.02	5.8×10-3
SUM	1.000		0.0078				3.50×10-6		0.045

Medium: Tol/Hex. Each $\Delta E_{3CT \rightarrow 1CT}(\theta)$ divided by constant b = 0.502 to attain $\Delta E_{(3CT \rightarrow 1CT)w} = 15.6$ meV. To each $V_{3CT-1CT}(\theta)$ a constant value c = 0.027 is added to attain $V_w = 0.051$ cm⁻¹

								V	
θ °		$\Delta E_{3CT \rightarrow 1CT}$		λ_{in}	$\lambda_{ m sum}$			[cm ⁻	
deviation	p_{T1}	[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	[eV]	[eV]	$k_{\rm rISC}$ [s ⁻¹]	$k_{\rm rISC}*p_{\rm T1}$	1]	V^*p_{T1}
±30	1.95×10-9	0.191	3.7×10 ⁻¹⁰	0.004	0.191	6.17×10 ⁻³	1.20×10 ⁻⁵	0.14	2.7×10 ⁻¹⁰
±25	2.41×10 ⁻⁶	0.148	3.6×10 ⁻⁷	0.003	0.148	3.23×10 ⁻⁴	7.79×10 ⁻²	0.13	3.1×10 ⁻⁷
±20	2.87×10-4	0.105	3.0×10 ⁻⁵	0.002	0.105	1.71×10 ⁻⁵	4.90×10 ⁻¹	0.12	3.4×10 ⁻⁵
±15	7.40×10 ⁻³	0.067	4.9×10 ⁻⁴	0.001	0.067	6.60×10 ⁻⁵	4.88×10-3	0.10	7.2×10 ⁻⁴
± 10	6.1×10 ⁻²	0.035	2.2×10-3	0.001	0.035	1.91×10-6	1.17×10-5	0.08	4.7×10-3
± 8	0.11	0.026	2.8×10-3	0.000	0.026	2.45×10-6	2.68×10-5	0.07	7.3×10 ⁻³
± 6	0.17	0.018	3.1×10-3	0.000	0.018	2.82×10-6	4.81×10-5	0.06	9.7×10-3
± 4	0.23	0.013	3.0×10 ⁻³	0.000	0.013	2.83×10-6	6.57×10-5	0.05	1.1×10 ⁻²
±2	0.27	0.010	2.6×10-3	0.000	0.010	2.31×10-6	6.33×10 ⁻⁵	0.04	1.0×10 ⁻²
0	0.15	0.009	1.3×10-3	0.000	0.009	1.32×10-6	1.92×10 ⁻⁵	0.03	7.4×10 ⁻³
SUM	1.000		0.0156				2.35×10-6		0.051

Medium: DMSO. Each $\Delta E_{3CT \rightarrow 1CT}(\theta)$ is divided by constant b = 1.58 to attain $\Delta E_{(3CT \rightarrow 1CT)w} = 5.0$ meV. To each $V_{3CT-1CT}(\theta)$ a constant value c = 0.0154 is added to attain $V_w = 0.038$ cm⁻¹

θ °		$\Delta E_{3CT \rightarrow 1CT}$			λsum			V	
deviation	$p_{ m T1}$	[eV]	$\Delta E_{3CT \rightarrow 1CT} * p_{T1}$	$\lambda_{in} [eV]$	[eV]	$k_{\rm rISC} [{\rm s}^{-1}]$	$k_{\rm rISC}*p_{\rm T1}$	[cm ⁻¹]	V^*p_{T1}
±30	1.95×10-9	0.061	1.2×10 ⁻¹⁰	0.004	0.061	1.46×10-6	2.83×10-3	0.13	2.4×10 ⁻¹⁰
±25	2.41×10-6	0.047	1.1×10 ⁻⁷	0.003	0.047	2.39×10-6	5.76	0.12	2.8×10-7
±20	2.87×10-4	0.033	9.6×10-6	0.002	0.033	4.00×10 ⁻⁶	1.15×10-3	0.11	3.0×10 ⁻⁵
±15	7.40×10-3	0.021	1.6×10 ⁻⁴	0.001	0.021	5.31×10-6	3.93×10 ⁻⁴	0.09	6.3×10 ⁻⁴
± 10	6.1×10 ⁻²	0.011	6.9×10 ⁻⁴	0.001	0.011	6.27×10-6	3.84×10-5	0.07	4.0×10-3
± 8	0.11	0.008	9.0×10 ⁻⁴	0.000	0.008	5.91×10-6	6.47×10 ⁻⁵	0.06	6.1×10 ⁻³
± 6	0.17	0.006	1.0×10-3	0.000	0.006	5.18×10-6	8.82×10-5	0.05	7.7×10-3
± 4	0.23	0.004	9.5×10-4	0.000	0.004	4.02×10-6	9.32×10 ⁻⁵	0.04	8.2×10-3
±2	0.27	0.003	8.4×10-4	0.000	0.003	2.50×10-6	6.84×10 ⁻⁵	0.03	7.0×10-3
0	0.15	0.003	4.1×10 ⁻⁴	0.000	0.003	9.63×10 ⁻⁵	1.40×10 ⁻⁵	0.02	4.2×10-3
SUM	1.000		0.0050				3.71×10-6		0.038

Parameter	Plot Exp.	Plot	Plot	Plot
		$V = V_{3CT \rightarrow 1CT}$	$V = 0.44 \text{ cm}^{-1}$	Vvariable
Slope	-1.14 ± 0.09	-2.58 ± 0.27	-2.39 ± 0.25	-1.09 ± 0.09
Intercept	18.28 ± 0.26	21.14 ± 0.81	21.92 ± 0.75	18.15 ± 0.28
R ²	0.98	0.97	0.97	0.98

Table S9. Linear regression parameters for the fitted dependencies Figure 6 main text.

Figure S12. Energy diagram for TMCz-BO in (A) Benzene in 77K, (B) in DMSO in RT .

Figure S13. The dependence of relative energy of electronic state on dihedral angle θ

[S1] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, *Adv. Mater.*, 2014, 26, 7931–7958.

[S2] I. E. Serdiuk, M. Monka, K. Kozakiewicz, B. Liberek, P. Bojarski, S. O. Park, *J. Phys. Chem. B.*, 2021, 125, 2696–2706.

[S3] P. K. Samanta, D. Kim, V. Coropceanu, J. L. Brédas, J. Am. Chem. Soc., 2017, 139, 4042–4051.