Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Nanoporous and Morphology-transforming g-CNNPs for Trace-level detection of Mefenamic Acid in Urine samples and *in vitro* Protein denaturation inhibition

Anusree S. Gangadharan,^a Daniel T. Thangadurai,^{a*} Nandhakumar Manjubaashini^b and Devaraj Nataraj^c

^aDepartment of Chemistry and Centre for Nanoscience and Technology, KPR Institute of

Engineering and Technology, Coimbatore 641407, Tamilnadu, India.

^bNational Centre for Nano Science and Technology, University of Madras, Chennai, 600025,

Tamilnadu, India.

^cDepartment of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India.

*Corresponding author: Tel.: +914222635600; Email: <u>danielthangadurai.t@kpriet.ac.in</u>

Figure S1. (a) ¹H NMR , and (b)¹³C NMR spectrum of g-CNNPs.

Figure S2. (a) TGA, and (b) DTA analysis of g-CNNPs.

Figure S3. Normalized UV-visible absorption spectra of MEF, and PL excitation and emission spectra of g-CNNPs (λ_{ex} ; 420 nm, slit width; 5 nm).

Binding constant, LoD, and LoQ calculations

From the fluorescence titration experiments, the binding strength between g-CNNPs and FPN was calculated by using the following equation.

$$\log[F - F_0/F_0] = \log K_a + n\log[Q]$$
(eq.S1)

Where "F" is the fluorescence intensity after the addition of FPN and " F_0 " is the initial fluorescence intensity of g-CNNPs. " K_a " is the binding constant, "n" is the number of binding sites, and "Q" is the concentration of guest, [MEF]. The K_a and 'n' can be estimated from the intercept and slope obtained by plotting log[F-F₀/F₀] against log[Q]. The fluorescence intensity was measured with the addition of MEF in different concentrations (Q) to the solution of g-CNNPs and they are labeled as 'F'. From the plot mentioned, the slope

and intercept are calculated. LoD and LoQ are obtained from the slope and intercept (eq. S2 and eq. S3, respectively).

$$LoD = [3 \times (intercept/slope)]$$
 (eq.S2)

$$LoQ = [10 \times (intercept/slope)]$$
 (eq.S3)

Figure S4. Datasheet of fluorescence emission intensity changes of g-CNNPs after the gradual addition of MEF and the limit of detection (LoD) is calculated via linear fit.

Figure S5: Zeta potential measurements of (a) g-CNNPs with the addition of MEF in different concentrations ((b) 0.25; (c) 0.5; and (d) 0.75 eq.).

Figure S6. XRD pattern of mefenamic acid (MEF).

Table S1. The 2 θ (λ =0.154 nm), plane, and interplanar distances (d_{hkl}) of MEF were obtained from XRD data.

Sl.	Peak position	Plane	d (nm)	
No	(20 /degree)			
1	14.1	(010)	0.63	
2	14.6	(110)	0.61	
3	15.3	(011)	0.58	
4	15.9	(101)	0.56	
5	17.1	(111)	0.52	
6	17.7	(021)	0.50	
7	20.3	(120)	0.44	
8	21.6	(130)	0.41	
9	22.7	(131)	0.39	
10	25.3	(040)	0.35	
11	26.4	(141)	0.34	
12	27.9	(150)	0.32	
13	31.5	(002)	0.28	
14	32.1	(221)	0.28	
15	33.1	(222)	0.27	
16	40.7	(240)	0.22	
17	45.7	(260)	0.20	

Figure S7. (A) FESEM images of g-CNNPs, and (B) Elemental mapping (C, N, O, and all together) of g-CNNPs.

Table S2. Percentage composition table of N, O, and C from EDS analysis of g-CNNPs.

Spectrum: BM 2643 Series unn. C norm. C Atom. C Error (1 Sigma) El AN [wt.%] [wt.%] [at.%] [wt.%] 8 K-series 75.30 75.30 70.03 9.35 0 26.19 K-series 21.14 21.14 3.24 C 6 1.01 7 K-series 3.56 3.56 3.78 Ν Total: 100.00 100.00 100.00

Figure S8. (A) FESEM images of g-CNNPs•MEF, and (B) Elemental mapping (C, N, O, and all together) of g-CNNPs•MEF.

Table S3. Percentage composition table of N, O, and C from EDS analysis of g-CNNPs●MEF.

```
Spectrum: BM 4416
El AN
       Series
                unn. C norm. C Atom. C Error (1 Sigma)
                                                     [wt.%]
                 [wt.%]
                          [wt.%]
                                   [at.%]
                                    64.79
   8
                  70.79
                           70.79
                                                       8.77
0
      K-series
С
                  26.92
                           26.92
                                    32.81
                                                       3.83
   6
      K-series
   7
                   2.29
                            2.29
                                     2.39
                                                       0.76
Ν
      K-series
         Total: 100.00
                          100.00
                                   100.00
```


Figure S9. (a) XPS survey spectra of g-CNNPs and high-resolution peak fitting spectra of C 1s (b), N 1s (c), and O 1s (d).

Figure S10. Raman spectra of g-CNNPs.

Figure S11. FT-IR spectra of g-CNNPs (a), g-CNNPs•MEF (b), and MEF (c).

SI.	Functional	Mode of	Observed frequency (cm ⁻¹)
No	groups	vibration	
1	OH/NH	stretching	~3357
2	C=O	stretching	~1647
3	N-H	bending	~1577
4	С-Н	bending	~1505, ~1334, ~756, ~674
5	О-Н	bending	~1437, ~1251
6	C=C	bending	~1165, ~1020, ~898

 Table S4. FT-IR spectrum of MEF identification.

Figure S12. The Normalized UV-Vis spectra of isolated g-CNNPs, MEF, and g-CNNPs•MEF.

Contact angle analysis:

To measure the contact angle, a g-CNNPs pellet was prepared a by compressing a known amount of powder into a circular disc shape. Placed the resulting pellet on a flat surface and ensure it is securely fixed. Dispense a small droplet of the test water onto the surface of the pellet using a micro-syringe. Capture an image of the droplet on the pellet surface using a contact angle goniometer. The contact angle was measured by analyzing the captured images typically using software that calculates the angle between the droplet and the pellet surface.

Table S5.	Comparison of MEF	detection by vario	ous materials and	techniques rep	orted so far.
-----------	-------------------	--------------------	-------------------	----------------	---------------

SI.	Material	Linier	LoD	Sensing	Real Sample	References
No		Range		Method	Analysis	
1	CV/CPE	0.01 to 470	0.0023	electrochemical	human blood, and	[13]
		μΜ	μΜ		pharmaceutical	
					samples	
2	SWCNTs/GCE	0.1 to 35	14.3 nM	electrochemical	human urine	[33]
		μΜ				
3	NiO-SWCNTs/	1.0 to	0.5 μΜ	electrochemical	tablet, injection, and	[34]
	DDPM/CPE	600 µM			pharmaceutical	
					serum	
4	CVO/RGO/GCE	0.001-to	0.0079	electrochemical	human blood serum	[35]
		425 μΜ	μΜ		and urine	
5	FCDs@SiO ₂ -	1.0 to 8 µM	197 nM	fluorescence	water, and cow urine	[36]
	TPA					
6	DMO/CNF/GCE	0.01 to 741	0.009	electrochemical	human blood and	[37]
		μΜ	μΜ		tablet	
7	mpg-C ₃ N ₄ /	0.2 to 400	0.045	electrochemical	human serum	[38]
	PANI/CdO	μΜ	μΜ			

8	Co ₃ O ₄ NPs	1 to 500	0.3 μΜ	electrochemical	-	[39]
		μΜ				
9	Zn-Fe ₂ O ₄ @	50 to 100	6.3 nM	electrochemical	tablet, human	[40]
	Ni-AlLDH	nM			plasma, urine, and	
					pharmaceutical	
					wastewater	
<mark>10</mark>	g-CNNPs	10 to 100	3.4 nM	fluorescence	humane urine	This Work
		nM				