Supporting Information

Nonlinear Transport Behaviors in Antiaromatic Cyclo[n]carbon-based (n = 4k) Molecular Devices

Junnan Guo¹, Wenhui Fang¹, Jian Huang¹, Lishu Zhang², Weikang Wu^{1†}, and Hui

 Li^{1*}

¹Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials,

Ministry of Education, Shandong University, Jinan 250061, China

²Peter Grünberg Institut (PGI-1) and Institute for Advanced Simulation (IAS-1),

Forschungszentrum Jülich, Jülich 52428, Germany

[†]E-mail: <u>weikang_wu@sdu.edu.cn</u>

*E-mail: lihuilmy@hotmail.com

Figure S1. Electron localization function (ELF) (isovalue = 0.94 au) of C_n . Short C-C bonds in each map are highlighted by an arrow.

Figure S2. (a) Structures of C_n (n from 10 to 34). (b) Device configurations of C_n chain, C_n -ribbon, and C_n -tube. I-V curves of C_n -chain (c), C_n -ribbon (d), and C_n -tube (e).

Figure S3. (a) Other device configurations of C_n -chain. (b) I-V curves of C_n -chain

Figure S4. (a) Frontier molecular orbitals energies of C_n . (b) Frontier molecular orbitals energies of C_n at 0 V bias after device construction. (c) Frontier molecular orbitals energies of C_n at 1.8 V bias after device construction.

Figure S5. (a) Molecular projected self-consistent Hamiltonian quantities (MPSH) around the Fermi energy level of C_{16} -chain. (b) Numbers of atoms in C_{16} (c) Transmission pathways of C_{16} -chain.

Figure S6. Molecular projected self-consistent Hamiltonian quantities (MPSH) around the Fermi energy level of C_n -chain. The dark shaded region is the dominant molecular orbital.

Figure S7. (a) Transmission spectra of device C_{24} -chain at typical biases. (b) Maximum transmission eigenvalues and transmission eigenstates of peaks I and II at corresponding biases.

Figure S8. (a) Molecular projected self-consistent Hamiltonian quantities (MPSH) around the Fermi energy level of C_{16} -ribbon. (b) Numbers of atoms in C_{16} . (c) Transmission pathways of C_{16} -ribbon.

Figure S9. Molecular projected self-consistent Hamiltonian quantities (MPSH) around the Fermi energy level of C_n -ribbon. The dark shaded region is the dominant molecular orbital.

Figure S10. (a) Transmission spectra of device C_{24} -ribbon at typical biases. (b) Maximum transmission eigenvalues and transmission eigenstates of peaks I and II at corresponding biases.

Figure S11. (a) Molecular projected self-consistent Hamiltonian quantities (MPSH) around the Fermi energy level of C_{16} -tube. (b) Numbers of atoms in C_{16} . (c) Transmission pathways of C_{16} -tube.

Figure S12. Molecular projected self-consistent Hamiltonian quantities (MPSH) around the Fermi energy level of C_n -tube. The dark shaded region is the dominant molecular orbital.

Figure S13. (a) Transmission spectra of device C_{24} -tube at typical biases. (b) Maximum transmission eigenvalues and transmission eigenstates of peaks I and II at corresponding biases.

Molecule	Electrode	Bias voltage (V)	Current order of magnitude	I _{max}	Key characteristics	NDR Peak-to- Valley Ratio (PVR)
Cyclo[18]carbon ¹	carbon chain	[0, 1]	μΑ	~50	Ohmic characteristic	
Cyclo[18]carbon ¹	graphene	[0, 1]	μΑ	~10	Quasi Schottky	
Cyclo[18]carbon ¹	silver	[0, 1]	μΑ	~8	Current- limiting	
Cyclo[14]carbon ² (polyynic)	graphene	[0, 1]	μΑ	~15	NDR effect	~1.4
Cyclo[14]carbon ² (cumulenic)	graphene	[0, 1]	μΑ	~20	Current- limiting	
Trefoil knot ³ (24 benzenes)	silver	[0, 2]	nA	~80	NDR effect	~1.7
Cyclopropyllithium derivative ⁴	carbon chain	[0, 3.5]	nA	~90	NDR effect	~6.1
Biphenyl ⁵	gold	[0, 2]	μΑ	~10	NDR effect	~1.1
Phenylpyridine ⁵	gold	[0, 2]	μΑ	~10	Nonlinearity	
Thiophene Benzene- Based molecules ⁶	graphene nanoribbon	[-2, 2]	μΑ	~20	Rectification; NDR effect	~3.0
Cyclo[n]carbon (Anti-aromatic)	carbon chain	[0, 2]	μΑ	~90	NDR effect; Current- limiting	~1.2
Cyclo[n]carbon (Anti-aromatic)	graphene nanoribbon	[0, 2]	μΑ	~25	NDR effect; Multi-NDR effect	~9.7
Cyclo[n]carbon (Anti-aromatic)	nanotube	[0, 2]	μΑ	~65	Multi-NDR effect; Oscillation	~1.9

Table S1. Performance comparison with other molecular-based devices

References

- 1. L. Zhang, H. Li, Y. P. Feng and L. Shen, J. Phys. Chem. Lett., 2020, 11, 2611-2617.
- 2. Y. Liu, Z. Fang, B. Yao, J. Zhu, G. Tian and L. Ma, *Appl. Phys. Lett.*, 2025, 126.
- 3. L. Zhu, Y. D. Guo, H. L. Zeng, H. X. Da, J. F. Li, Z. C. Liang, Y. Y. Jiang and X. H. Yan, *Phys. Lett. A*, 2021, **410**, 127539.
- Y. D. Guo, P.-Y. Huang, X. X. Min, L.Y. Lin, M. Q. Rao, C. J. Dai, J. H. Li, P. Chen and X. H. Yan, *Phys. B: Condens. Matter*, 2022, 639, 413989.

- 5. G. Berdiyorov and H. Hamoudi, J. Mater. Res. Technol., 2021, 12, 193-201.
- 6. Y. Xia, X. Zhang, C. Yuan, L. Zhang, X. Dai, T. Li, C. Fu and H. Li, *J. Phys. Chem. C*, 2019, **123**, 2766-2774.