

11 **Fig. S1** Photoelectrochemical J-V characteristics of BiVO₄ in different cycles in 0.5 M Na₂SO₃ with 0.1 M borate 12 buffer (pH 9.3, adjusted by 0.1M NaOH).

13

14

15 **Table S1** Calculation of theoretical redox potential for glycerol to DHA.¹

ΔG_f (C ₃ H ₈ O ₃)	ΔG_f (C ₃ H ₆ O ₃)	E° _{Anode}	E° _{Cathode}
$(kJ \mod 1)$	(kJ mol $^{-1}$)	(V vs. NHE)	(V vs. NHE)
-478.6	-428.18	0.26	

16 Standard Gibb's free energy and redox potential of reaction for the GOR to DHA coupled with the HER were

17 calculated based on the above data.

18 For anode reaction (GOR):

$$
19 \t C_3H_8O_3 (glycerol) \to C_3H_6O_3 (DHA) + 2H^+ + 2e^-, \Delta G_{anode} = 50.42 \text{ kJ mol}^{-1}, \text{ } E^{\circ}_{Anode} = 0.26 \text{ V vs. NHE}
$$

20 For cathode reaction (HER):

$$
21 \\
$$

21 $2H^+ + 2e^- \rightarrow H_2$, $\Delta G_{\text{cathode}} = 0$ kJ mol⁻¹, $E^{\circ}_{\text{cathode}} = 0$ V vs. NHE

22 For overall reaction using $E^{\circ}_{cell} = E^{\circ}_{Cathode} - E^{\circ}_{Anode}$

23 C₃H₈O₃ (glycerol) → C₃H₆O₃ (DHA) + H₂, ΔG_{overall} = -50.42 kJ mol⁻¹, E[°]_{Cell} = -0.26 V vs. NHE

24 Equation ΔG° = nFE $^{\circ}$ _{Cell} is used to calculate E $^{\circ}$ _{Cell}, where n is the number of electrons transferred and F is the

25 Faraday constant (96485 C mol⁻¹). All thermodynamic properties are reported under standard conditions (1 bar 26 and 298 K).

27

Fig. S2 Photoelectrochemical J-V characteristics of BiVO⁴ in different oxidation reactions at pH 2.

34 **Fig. S3** Chronoamperometric curves on BiVO₄ in 0.5 M Na₂SO₄ with 0.1 M glycerol under 1.0 V vs. RHE at pH 2, pH 5.6, and pH 9.3.

The J-t curves in Fig. S3 demonstrated that photocurrent density initially decreased after first illumination at

pH 2 pH 5.6, and pH 9.3, which can be attributed to the accumulation of holes at the BiVO₄ surface and the

relatively slow interfacial charge transfer compared to charge recombination.² As the illumination progresses,

the photocurrent density gradually increased, resulting from time-dependent photoactivation during water

and glycerol oxidation.³

Fig. S4 FEs of FA under 1.0 V vs. RHE at pH 2, pH 5.6, and pH 9.3.

Fig. S5 Production rates and selectivities of DHA under 1.0 V vs. RHE at pH 2, pH 5.6, and pH 9.3.

-
-

Fig. S6 (a) Chronoamperometric curves on BiVO4, and (b) Production rates and selectivities of DHA at pH 2

under 0.8, 1.0, 1.2, and 1.4 V vs. RHE.

53 **Fig. S7** Photoelectrochemical J-V characteristics of BiVO₄ and 50 BiVO₄ for sulfite oxidation (pH 9.3) and glycerol oxidation (pH 2).

- A thermal treatment below 150 ℃ was insufficient for modifying BiVO4, as it exerted minimal influence on the
- 56 formation of oxygen vacancies, bulk efficiency of BiVO₄, and the charge transfer dynamics for glycerol
- oxidation.
-
-
-

- 62 **Fig. S8** Chronoamperometric curves on BiVO₄ and X BiVO₄ (X=N₂-annealing temperature) in 0.5 M Na₂SO₄ with
- 0.1 M glycerol under 1.0 V vs. RHE at pH 2.

68 XPS spectra of (a) Bi 4f, (b) V 2p, and (c-d) O 1s for 150 BiVO₄. (e) Photoelectrochemical J-V curves of 150 BiVO₄

69 before and after reaction. (f) FE-SEM image of 150 BiVO₄ after reaction.

- 71 Following a chronoamperometric measurement for 1 hour on 150 BiVO₄ for glycerol oxidation under 1.0 V vs.
- 72 RHE at pH 2, XPS results showed no new shoulder peaks for Bi 4f, V 2p, and O 1s, confirming that the
- 73 composition of BiVO₄ remained well-preserved (Fig. S9(a-d)). J-V analysis was conducted to assess glycerol
- 74 oxidation performance for 150 BiVO₄ after reaction for 1 hour, with no changes observed (Fig. S9(e)). Also, the
- 75 condensed morphology with minor pores between crystallites was preserved, showing no significant signs of
- 76 corrosion or degradation compared to the 150 BiVO₄ before the reaction (Fig. S9(f)).
- 77 As a result, the chemical states of the elements constituting BiVO₄ were preserved, indicating that the
- 78 oxidation reaction for 1 hour did not cause significant damage to the BiVO₄ film. Additionally, the Pourbaix
- 79 diagram of BiVO₄ indicates that BiVO₄ film remains in a stable solid-state, maintaining its integrity in
- 80 an aqueous solution under 1.0 V vs. RHE at pH 2. ⁴ Meanwhile, the slight decrease observed in
- 81 the chronoamperometric curve of 150 BiVO₄ after 3000 s is attributed to changes in the distribution and
- 82 concentration gradients of reactants and products within the electrolyte.
- 83

85 **Fig. S10** XRD patterns of BiVO₄ and X BiVO₄.

89 **Fig. S11** FE-SEM images of top-view of (a) 150 BiVO₄, (b) 200 BiVO₄, and (c) 250 BiVO₄. The inset images show

the corresponding cross-sectional image.

94 **Fig. S12** visible absorbance spectra of BiVO₄ and X BiVO₄.

96 **Fig. S13** Power of light provided by the solar simulator and light absorbed by (a) BiVO₄ and (b) 150 BiVO₄.^{5, 6}

98

99 **Table S2** Slope, x-axis intercept, carrier density, and Flat Band potential of BiVO₄ and 150 BiVO₄ calculated by 100 the Mott-Schottky method.7

	Slope	x-axis intercept	N_D (cm ⁻³)	V_{FB} (V vs. RHE)
BiVO ₄	1.202×10^{13}	0.194	5.87 x 10^{18}	0.168
150 BiVO $_a$	6.147 x 10^{12}	0.178	1.15×10^{19}	0.153

101 Flat band potential (VFB) and carrier density (N_D) of photoanode was calculated based on Mott-Schottky 102 equation

$$
\frac{1}{103} = \frac{2}{\varepsilon \varepsilon_0 q N_D A^2} (V - V_{FB} - \frac{k_B T}{q})
$$

104 $N_D =$ 2 εε₀qA²(slope)

$$
V_{FB} = x - axis \text{ } intercept - \frac{K_B T}{q}
$$

106 where ϵ is the semiconductor dielectric constant (32 for BiVO₄), ϵ_0 is the vacuum permittivity constant (8.85 x 107 10⁻¹⁴ F cm⁻¹), ^q is the elementary charge (1.602 x 10⁻¹⁹ C), A is the electrode area (0.25 cm²), k_B is the 108 Boltzmann constant (1.38 x 10⁻²³ J K⁻¹), and T is the absolute temperature (298 K).

109

110

111

112

115 **Table S3** Energy levels of BiVO₄ and 150 BiVO₄ calculated by UPS measurements.^{8, 9}

116 To identify the energy level alignment of the photoanode, the ultraviolet photoelectron spectroscopy (UPS) 117 measurements were carried out on BiVO₄ and 150 BiVO₄. The cutoff energy and onset energy were obtained

118 by linearly extrapolating the high binding energy and low binding energy, respectively. The valence band 119 maximum (VBM) can be computed using the following equation

$$
120 \quad VBM = hv - (E_{cutoff} - E_{onset})
$$

121 Where hv = 21.22 eV is the incident photo energy from a He (I) source of UPS systems. The conduction band

122 minimum (CBM) was deduced from bandgap and VBM. The work function (WF) was calculated using the

123 following formulation

$$
124 \quad WF = E_{vacuum} - E_F = hv - E_{cutoff}
$$

125 Where E_F is the Fermi-level. Finally, the relationship between the vacuum energy (V vs. vacuum) and the 126 normal electrode potential (V vs. NHE) was provided by $E_{vacuum} = -E_{NHE} - 4.44$.

127

128

129 **Table S4** O 1s peak fitting results obtained from XPS analysis.

130

133 **Fig. S14** XPS of (a) Bi 4f spectra and (b) V 2p spectra for BiVO₄ and 150 BiVO₄.

137 **Fig. S15** Surface charge injection efficiencies of the BiVO₄ and 150 BiVO₄.

-
-
-

143 **Fig. S16** Mott-Schottky plots of BiVO₄ and X BiVO₄.

144

145

146 **Table S5** Summary table of the recent advances in photoelectrochemical glycerol oxidation to 147 dihydroxyacetone (DHA).

References

 1. Y. Pei, Z. Pi, H. Zhong, J. Cheng and F. Jin, *Journal of Materials Chemistry ^A*, 2022, **10**, 1309-1319. 2. N. Klinova McMillan, D. A. Lopez, G. Leem and B. D. Sherman, *ChemPlusChem*, 2022, **87**, e202200187. 3. R. T. Gao, S. Liu, X. Guo, R. Zhang, J. He, X. Liu, T. Nakajima, X. Zhang and L. Wang, *Advanced Energy Materials*, 2021, **11**, 2102384. 4. F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. McDowell, J. Yu, D. M. Larson, N. J. Borys, C. Abelyan, J. W. Beeman and K. M. Yu, *Nature communications*, 2016, **7**, 12012. 5. Y. Ma, S. R. Pendlebury, A. Reynal, F. Le Formal and J. R. Durrant, *Chemical Science*, 2014, **5**, 2964-2973. 6. J. H. Kim, J. H. Kim, J. W. Jang, J. Y. Kim, S. H. Choi, G. Magesh, J. Lee and J. S. Lee, *Advanced Energy Materials*, 2015, **5**, 1401933. 7. M. A. De Araújo, D. Coelho, L. H. Mascaro and E. C. Pereira, *Journal of Solid State Electrochemistry*, 2018, **22**, 1539-1548. 8. L. Shi, C. Xu, X. Sun, H. Zhang, Z. Liu, X. Qu and F. Du, *Journal of Materials Science*, 2018, **53**, 11329-11342. 9. V.-H. Tran, H. Park, S. H. Eom, S. C. Yoon and S.-H. Lee, *ACS omega*, 2018, **3**, 18398-18410. 10. T.-G. Vo, C.-C. Kao, J.-L. Kuo, C.-c. Chiu and C.-Y. Chiang, *Applied Catalysis B: Environmental*, 2020, **278**, 119303. 11. C. Lin, C. Dong, S. Kim, Y. Lu, Y. Wang, Z. Yu, Y. Gu, Z. Gu, D. K. Lee and K. Zhang, *Advanced Materials*, 2023, **35**, 2209955. 12. Y. Miao, Z. Li, Y. Song, K. Fan, J. Guo, R. Li and M. Shao, *Applied Catalysis B: Environmental*, 2023, **323**, 122147. 13. X. Feng, X. Feng and F. Zhang, *Journal of Materials Chemistry ^A*, 2023, **11**, 20242-20253. 14. Y. Lu, B. G. Lee, C. Lin, T.-K. Liu, Z. Wang, J. Miao, S. H. Oh, K. C. Kim, K. Zhang and J. H. Park, *Nature communications*, 2024, **15**, 5475. 15. L. Wang, Z. Chen, Q. Zhao, N. Wen, S. Liang, X. Jiao, Y. Xia and D. Chen, *Advanced Functional Materials*, 2409349. 16. Z. Kang, Y. Zheng, H. Li, Y. Shen, W. Zhang, M. Huang and X. Tao, *Chemical Engineering Journal*, 2024, 156324.