Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Modulation of the microstructure and electrical properties of LaAlO₃ ceramics induced by doping with rare earth elements (Eu, Gd, Ho, and Tm)

Kai Ding^{a,b}, Wenye Deng^c, Jinyang Li^{a,b}, Ni Ai^{a,d}, Yan Xue^a, Xianghui Chen^e, Pengjun Zhao^a, Weiwei Meng^a, Aimin Chang^a, Yongxin Xie^{a, \Box} ^aState Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, China ^bSchool of Materials Science and Engineering, Xinjiang University, Urumqi, 830046, China ^cSchool of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Xinjiang, 830023, China ^dState Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China. ^eChongqing Material Research Institute Co, Ltd. \boxtimes Corresponding author. E-mail address: xieyx@ms.xjb.ac.cn

Figure S1. XPS full spectra

corumes					
	Lattice constants	Lattice constants	Cell volume		
	(Å)	(Å)	(Å3)		
LaAlO ₃	a = b = 5.34739	c = 13.04416	323.02		
La _{0.9} Eu _{0.1} AlO ₃	a = b = 5.33692	c = 13.03766	321.6		
$La_{0.9}Gd_{0.1}AlO_3$	a = b = 5.33495	c = 13.02154	320.96		
$La_{0.9}Ho_{0.1}AlO_3$	a = b = 5.33686	c = 13.02857	321.37		
$La_{0.9}Tm_{0.1}AlO_3$	a = b = 5.37488	c = 13.03974	326.24		

Table 1. Cell parameters of the $La_{0.9}X_{0.1}AlO_3$ (X = Eu, Gd, Ho, Tm) and $LaAlO_3$ ceramics

Refinemen	LaAlO	La _{0.9} Eu _{0.1} AlO	La _{0.9} Gd _{0.1} AlO	La _{0.9} Ho _{0.1} AlO	La _{0.9} Tm _{0.1} AlO
t factors	3	3	3	3	3
Rp (%)	6.16	6.61	5.41	6.58	7.91
Rwp(%)	9.317	8.569	8.282	8.572	9.564
χ2 (%)	2.48	2.48	2.32	2.57	2.81

Table 2. Cell refinement factors obtained by Rietveld refinement $La_{0.9}X_{0.1}AlO_3$ and

LaAlO₃ samples.

Table 3. Binding energy and vacancy oxygen concentration of lattice oxygen (O lattice) and vacancy oxygen (O vacancy) in $La_{0.9}X_{0.1}AlO_3$ (X=Eu, Gd, Ho, Tm) and

	O 1s O lattice	O1s O vacancy	O vacancy
	(eV)	(eV)	concentration
LaAlO ₃	529.79	531.98	0.3578
$L_{a0.9}Eu_{0.1}AlO_3$	529.59	531.50	0.3895
$La_{0.9}Gd_{0.1}AlO_3$	529.90	532.04	0.3038
La _{0.9} Ho _{0.1} AlO ₃	529.67	531.77	0.4154
$La_{0.9}Tm_{0.1}AlO_3$	529.62	531.64	0.7243

LaAlO₃ ceramics

Computational details

The calculations of density functional theory are done with the projector augmented plane-wave basis, which is implemented in Vienna ab-initio simulation package. And the plane-waves are cut-off at 550 eV. The exchange-correlations of electrons are described by the generalized gradient approximations with the form proposed by Perdew, Burke, and Ernzerhof. To improve the descriptions on the correlation interactions, the Hubbard U scheme is employed with Ueff = 5.0 eV applied on the f-shell of Eu, Gd, Ho and Tm. The energy converge criterion for solving self-consistent Kohn-Sham equations is 10^{-6} eV. The Brillouin zone is sampled with resolution of 0.03 Å⁻¹, using the scheme of Monk horst-Pack. All the structures in this study are fully relaxed until the Hellman-Feynman smaller than 0.05 eV/Å. ¹⁻⁵

References

- 1. G. Kresse and D. Joubert, *Phys. Rev. B.*, 1999, **59**, 1758.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 3. C. Franchini, R. Kováčik, M. Marsman, S. S. Murthy, J. He, C. Ederer and
- G. Kresse, J. Phys. Condens. Matter., 2012, 24, 235602.
 - . H. J. Monkhorst and J. D. Pack, *Phys. Rev. B.*, 1976, **13**, 5188.
- 5. V. I. Anisimov, J. Zaanen and O. K. Andersen, *Phys. Rev. B.*, 1991, 44, 943.