Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Transforming Mo_{0.5}W_{0.5}O₃ to MoS₂: Leveraging Selective Sulfurization for Enhanced Electrocatalysis

Naveen Goyal ^a, Gokul Raj ^a, Karuna Kar Nanda ^a, and N. Ravishankar ^{a, *}

^a Materials Research Centre, Indian Institute of Science, Bangalore-560012, India

*Corresponding author: <u>nravi@iisc.ac.in</u>

Compound	Lattice Parameters				
	a (Å)	b (Å)	c (Å)		
WO ₃ 0.33H ₂ 0	7.35	12.51	7.70		
MoO ₃ 0.33H ₂ 0	7.33	12.67	7.69		
W _{0.5} Mo _{0.5} O ₃ 0.33H ₂ 0	7.34	12.59	7.695		

Table S1. Lattice parameters of hydrated WO₃, MoO_3 and $W_{0.5}Mo_{0.5}O_3$.

Figure S1. XPS spectra of (a) Mo 3d, (b) W 4f, and (c) O 1s of template $W_{0.5}Mo_{0.5}O_3 0.33H_20$.

Figure S2 High resolution TEM micrograph showing layers of MoS_2 in final selectively sulfurized product.

Figure S3. High resolution XPS spectra of (a) Mo 3d, (b) W 4f, (c) S 2p, and (d) O 1s of final selective sulfurized product.

Figure S4: Raman spectra of selective sulfurized product depicting formation of only MoS₂.

Figure S5. Time dependent experiment; (a) BF-TEM micrograph of 3 h sulfurized product, (b) corresponding HAADF-STEM micrograph and EDS maps showing elemental distribution of Mo (c), W (d), O (e), and S (f), respectively.

Figure S6. Structural arrangement of Mo in octahedral environment of O and H_2O in pristine $W_{0.5}Mo_{0.5}O_3 \ 0.33H_2O$.

Figure S7. BF-TEM micrograph of 6 h sulfurized product showing formation of MoS₂-WO₃ heterostructure.

Table S2. Calculated binding energies and % abundance of various oxidation states of Mo inXPS analysis of 6 h sulfurized product.

Мо	Oxidation state	Binding energy (eV)	Peak area	Total area of each oxidation state	% abundance of each oxidation state
3d _{3/2}	+6	236.0	26489	66624	51.3
3d _{5/2}		232.9	40135		
3d _{3/2}	+4	234.6	25170	63306	48.7
3d _{5/2}		231.5	38136		

Figure S8. High resolution XPS spectra of (a) S 2p, and (b) O 1s of 6 h sulfurized product.

Figure S9. Time dependent experiment; (a) BF-TEM micrograph of 12 h sulfurized product, (b) corresponding HAADF-STEM micrograph and EDS maps showing elemental distribution of Mo (c), W (d), O (e), and S (f), respectively.

Figure S10. PXRD pattern of 12 h sulfurized product depicting co-existence of MoS_2 (major) and WO_3 (minor).

Figure S11: TGA plot of template $W_{0.5}Mo_{0.5}O_3 0.33H_20$.

Figure S12. BF-TEM micrograph showing variation in size of MoS_2 obtained using (a) hydrated $W_{0.5}Mo_{0.5}O_3$, and (b) non-hydrated $W_{0.5}Mo_{0.5}O_3$.

Figure S13. Time dependent experiment; HAADF-STEM micrograph of 6 h sulfurized product using non-hydrated $W_{0.5}Mo_{0.5}O_3$ and corresponding EDS maps showing elemental distribution of Mo, W, S, and O, respectively.

Figure S14. (a) Powder XRD pattern of pristine MoS_2 (synthesized separately using one-pot hydrothermal method); (b) BF-TEM micrograph, and (c) Diffraction pattern.

Characterization of pristine MoS₂

To correlate the physical and electrochemical properties of the MoS₂ synthesized using selective sulfurization of $W_{0.5}Mo_{0.5}O_3$ with that of MoS₂ reported in literature, pristine MoS₂ was prepared using a one-pot hydrothermal method. The characterization of this pristine MoS₂ is shown in **Figure S14**. **Figure S14(a)** depicts the powder XRD pattern of as-synthesized MoS₂, completely matches with JCPDS card no. 06-0097 with lattice parameters a = b = 3.16 Å, c = 12.295 Å, suggesting phase pure synthesis. In **Figure S14(b-c)**, TEM micrograph and corresponding diffraction pattern is shown. Flower morphology with SAED containing rings pattern, depicts their polycrystalline behavior. The BET surface area and electrochemical properties of these MoS₂ flowers have been compared with MoS₂ prepared by sulfurization of $W_{0.5}Mo_{0.5}O_3$ to elucidate the influence of selective sulfurization process on the materials characteristics.

Figure S15. Nitrogen adsorption-desorption isotherms (BET plots) of (a) $W_{0.5}Mo_{0.5}O_3$ (H); (b) PS-3 h; (c) PS-6 h; (d) PS-12 h, (e) SS-MoS₂; and (f) Pristine MoS₂ (inset: Pore size distribution curves).

Table S3. Specific surface area, average pore size and average pore volume values of samples, obtained by BET and BJH method, respectively.

Sample	Surface area (m^2/g)	Average Pore size (nm)	Average Pore volume (cm ³ /g)
$W_{0.5}Mo_{0.5}O_{3}(H)$	53.9	3.15	0.10
PS-3 h	137.2	3.32	0.14
PS-6 h	229.6	3.72	0.65
PS-12 h	172.2	3.94	0.54
SS-MoS ₂	122.1	3.73	0.30
Pristine MoS ₂	45.4	3.14	0.11

Figure S16. Cyclic voltametric response of samples in the non-faradaic region near to the HER polarisation region in 0.5 M H_2SO_4 of (a) PS-6 h; (b) PS-12 h; (c) SS-MoS₂; (d) Pristine MoS₂ and (e) $W_{0.5}Mo_{0.5}O_3$ (H), respectively.

Figure S17: Equivalent circuit diagram used in EIS simulation.

Sample	R1(solution resistance)	R2 (Charge transfer resistance)	R3 (adsorption resistance)
PS-6 h	4.6	96.7	989
PS-12 h	2.9	51.6	738
SS-MoS ₂	10.3	206.1	1224
$W_{0.5}Mo_{0.5}O_{3}(H)$	1.2	541	2725
Pristine MoS ₂	5.8	271	3538

Table S4: EIS circuit fitting for HER in 0.5 M H₂SO₄

Figure S18. Cyclic voltametric response of samples in the non-faradaic region near to the OER polarisation region in 1M KOH of (a) PS-6 h; (b) PS-12 h; (c) SS-MoS₂; (d) Pristine MoS_2 and (e) $W_{0.5}Mo_{0.5}O_3$ (H), respectively.

Sample	R1(solution resistance)	R2 (Charge transfer resistance)	R3 (adsorption resistance)
PS-6 h	5.5	14.2	2.9
PS-12 h	5.6	11.8	9.4
SS-MoS ₂	6.3	17.1	18.4
$W_{0.5}Mo_{0.5}O_{3}(H)$	5	26.1	1159
Pristine MoS ₂	4.6	36.6	4154

Table S5: EIS circuit fitting for OER in 1 M KOH

Figure S19. Post HER analysis of PS-6h sample; (a) PXRD pattern; (b) SEM micrograph; (c) HAADF-STEM micrograph and corresponding EDS maps of Mo, W, S and O elements in the sample.

Figure S20. Post OER analysis of PS-6h sample; (a) PXRD pattern; (b) SEM micrograph; (c) HAADF-STEM micrograph and corresponding EDS maps of Mo, W, S and O elements in the sample.

Figure S21. Post OER analysis of SS-MoS $_2$ sample; (a) PXRD pattern; (b) HAADF-STEM micrograph and corresponding EDS maps of Mo, S, and O elements in the sample.

Table	S6 .	Comparison	of HER	and	OER	activity	of	previously	reported	MoS_2	and	its
heteros	truct	tures with our	samples.									

Sample	Reaction	Electrolyte	Overpotential	Tafel	Stability	Reference
-		media	<i>a</i> 10	slope	14h	
			mA/cm ²	(mV/dec)	(%	
			(mV)	, í	activity	
					retention)	
PS-6 h	HER	0.5 M	211	123	95	This
(MoS ₂ -WO ₃		H_2SO_4				work
heterostructure)						
2H MoS ₂	HER	0.5 M	686	204	-	1
		H_2SO_4				
MoS ₂ sheets	HER	0.5 M	420	138	-	2
		H_2SO_4				
Etched MoS ₂	HER	0.5 M	267	136	-	3
		H_2SO_4				
SV-2H MoS ₂	HER	0.5 M	369	69	-	1
		H_2SO_4				
MoS ₂ /Nb ₂ CT _x	HER	0.5 M	138	94	~70	4
		H_2SO_4				
FeS ₂ -MoS ₂	HER	0.5 M	136	82	-	5
		H_2SO_4				
Ni-MoS ₂	HER	0.5 M	302	67	-	6
		H_2SO_4				

1T-2H MoS ₂	HER	0.5 M	212	78	-	7
		H ₂ SO ₄				
Mo ₂ N/CNT	HER	0.5 M H ₂ SO ₄	218	133	~80	8
MoO ₃ -MoS ₂	HER	0.5 M H2SO4	200	74	-	9
Co-BDC/MoS ₂	HER	0.5 M H ₂ SO ₄	248	86	~85	10
MoS ₂ /Ni QDs	HER	0.5 M H ₂ SO ₄	450	105	-	11
MoS ₂ /graphene	HER	$\begin{array}{c} 11_{2} \circ 0.4 \\ 0.5 \text{ M} \\ \text{H}_2 \text{SO}_4 \end{array}$	30	67	-	12
MoS ₂ ultrathin nanosheets	HER	0.5 M H ₂ SO ₄	300	55	-	13
H-MoS	HER	0.5 M H ₂ SO ₄	167	70	-	14
SV-MoS ₂	HER	0.5 M H ₂ SO ₄	170	60	-	15
PS-6 h (MoS ₂ -WO ₃ heterostructure)	OER	1 M KOH	485	179	87	This work
MoS ₂ /Co-N-CN ₂	OER	1 M KOH	442	169	~72	16
Co ₉ S ₈ @MoS ₂	OER	1 M KOH	430	61	-	17
Sr ₂ Fe ₂ O ₆ @d	OER	0.1M KOH	600	60	-	18
Co-CoO/rGO	OER	1M KOH	390	68	97	19
MoS ₂ /BN	OER	1М КОН	770	190	-	20
BP/NS	OER	1M KOH	592	308	-	21
BP(Ni ₂ Fe ₂)	OER	1M KOH	510	252	-	22
MoS ₂ /rGO-3%	OER	1M KOH	250	195	-	23
MoO ₃	OER	1М КОН	644	89	-	24
Porous MoO ₃	OER	1М КОН	510	125	83	25
MoS ₂ /NiS ₂	OER	1М КОН	235	71	-	26
Ni-Mo-S@CC	OER	1М КОН	320	88	-	27
Co-Ru 1T MoS ₂	OER	1М КОН	308	55	-	28
Fe/MoS ₂ /CoMo ₂ S ₄	OER	1М КОН	290	65	-	29
M ₁ S ₁	OER	1M KOH	300	220	-	30

Mo NC@MoS ₂	OER	1М КОН	390	72	-	31
MoS ₂ /COF-C ₄ N	OER	1M KOH	349	64	79	32

References

- 1 C. Gu, T. Sun, Z. Wang, S. Jiang and Z. Wang, *Small Methods*, 2023, 7, 2201529.
- 2 X. Yin, Y. Li, H. Meng and W. Wu, *Appl. Surf. Sci.*, 2019, **486**, 362–370.
- 3 R. Zhang, M. Zhang, H. Yang, G. Li, S. Xing, M. Li, Y. Xu, Q. Zhang, S. Hu, H. Liao and Y. Cao, *Small Methods*, 2021, **5**, 2100612.
- 4 L. Hu, Y. Sun, S.-J. Gong, H. Zong, K. Yu and Z. Zhu, *New J. Chem.*, 2020, **44**, 7902–7911.
- 5 X. Zhao, X. Ma, Q. Lu, Q. Li, C. Han, Z. Xing and X. Yang, *Electrochim. Acta*, 2017, **249**, 72–78.
- 6 P. Sundara Venkatesh, N. Kannan, M. Ganesh Babu, G. Paulraj and K. Jeganathan, *Int. J. Hydrogen Energy*, 2022, **47**, 37256–37263.
- 7 Z. Hong, W. Hong, B. Wang, Q. Cai, X. He and W. Liu, *Chem. Eng. J.*, 2023, **460**, 141858.
- 8 M. Meng, H. Yan, Y. Jiao, A. Wu, X. Zhang, R. Wang and C. Tian, *RSC Adv.*, 2016, **6**, 29303–29307.
- 9 X. Hou, A. Mensah, M. Zhao, Y. Cai and Q. Wei, *Appl. Surf. Sci.*, 2020, **529**, 147115.
- 10 D. Zhu, J. Liu, Y. Zhao, Y. Zheng and S.-Z. Qiao, *Small*, 2019, **15**, 1805511.
- 11 B. Lai, S. C. Singh, J. K. Bindra, C. S. Saraj, A. Shukla, T. P. Yadav, W. Wu, S. A. McGill, N. S. Dalal, A. Srivastava and C. Guo, *Mater. Today Chem.*, 2019, **14**, 100207.
- 12 L. Ma, Y. Hu, G. Zhu, R. Chen, T. Chen, H. Lu, Y. Wang, J. Liang, H. Liu, C. Yan, Z. Tie, Z. Jin and J. Liu, *Chem. Mater.*, 2016, **28**, 5733–5742.
- 13 J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan and Y. Xie, J. Am. Chem. Soc., 2013, 135, 17881–17888.
- 14 J. Zhang, S. Liu, H. Liang, R. Dong and X. Feng, *Adv. Mater.*, 2015, 27, 7426–7431.
- 15 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov and X. Zheng, *Nat. Mater.*, 2016, 15, 48–53.
- 16 X. Hou, H. Zhou, M. Zhao, Y. Cai and Q. Wei, *ACS Sustain. Chem. Eng.*, 2020, **8**, 5724–5733.
- 17 H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao and X. Zhang, *Adv. Mater.*, 2015, **27**, 4752–4759.

- 18 R. K. Hona and F. Ramezanipour, *Angew. Chemie Int. Ed.*, 2019, **58**, 2060–2063.
- 19 X. Liu, W. Liu, M. Ko, M. Park, M. G. Kim, P. Oh, S. Chae, S. Park, A. Casimir, G. Wu and J. Cho, *Adv. Funct. Mater.*, 2015, **25**, 5799–5808.
- 20 J. Hou, Y. Sun, Y. Wu, S. Cao and L. Sun, *Adv. Funct. Mater.*, 2018, 28, 1704447.
- 21 Q. Xu, J. Zhang, H. Zhang, L. Zhang, L. Chen, Y. Hu, H. Jiang and C. Li, *Energy Environ. Sci.*, 2021, **14**, 5228–5259.
- 22 X. Deng, R. Zhang, Q. Li, W. Gu and L. Hao, *ChemistrySelect*, 2022, 7, e202200091.
- 23 M. S. Khan, T. Noor, E. Pervaiz, N. Iqbal and N. Zaman, *RSC Adv.*, 2024, **14**, 12742–12753.
- 24 S. D. Raut, N. M. Shinde, B. G. Ghule, S. Kim, J. J. Pak, Q. Xia and R. S. Mane, *Chem. Eng. J.*, 2022, **433**, 133627.
- 25 M. Zhang, R. Li, D. Hu, X. Huang, Y. Liu and K. Yan, J. Electroanal. Chem., 2019, 836, 102–106.
- 26 J. Bao, Y. Zhou, Y. Zhang, X. Sheng, Y. Wang, S. Liang, C. Guo, W. Yang, T. Zhuang and Y. Hu, *J. Mater. Chem. A*, 2020, **8**, 22181–22190.
- 27 Y. Wang, W. Sun, X. Ling, X. Shi, L. Li, Y. Deng, C. An and X. Han, *Chem. A Eur. J.*, 2020, **26**, 4097–4103.
- 28 I. S. Kwon, T. T. Debela, I. H. Kwak, Y. C. Park, J. Seo, J. Y. Shim, S. J. Yoo, J.-G. Kim, J. Park and H. S. Kang, *Small*, 2020, 16, 2000081.
- 29 Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y.-M. Kang, M. S. A. Hossain, Y. Sugahara and Y. Yamauchi, ACS Nano, 2020, 14, 4141–4152.
- 30 B. Chen, P. Hu, F. Yang, X. Hua, F. F. Yang, F. Zhu, R. Sun, K. Hao, K. Wang and Z. Yin, *Small*, 2023, **19**, 2207177.
- 31 I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H. Zhang and S. Mu, *Adv. Funct. Mater.*, 2017, **27**, 1702300.
- 32 N. Zhang, Z. Yang, W. Liu, F. Zhang and H. Yan, *Catalysts*, , DOI:10.3390/catal13010090.