Electronic Supplementary Information

Journal of Materials Chemistry C

Greenish yellow-emitting carbon dot-based films for luminescent solar concentrator applications

Yunxiang Liu, Yoshiki Iso* and Tetsuhiko Isobe*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

*Corresponding authors.

Yoshiki Iso – E-mail: iso@applc.keio.ac.jp; Tel.: +81 45 566 1558; Fax: +81 45 566

1551; orcid.org/0000-0001-7483-2828

Tetsuhiko Isobe – E-mail: isobe@applc.keio.ac.jp; Tel.: +81 45 566 1554; Fax: +81 45 566 1551; orcid.org/0000-0002-0868-5425

Table S1 Information of various carbon dots (CDs) in luminescent solar concentrators(LSCs).

Carbon source	Synthesis Method	Purification	$\lambda_{\rm em}$ (nm)	PLQY	Year	Ref.
Citric acid, urea	160/200 °C, 6 h in dimethylformamide (Solvothermal)	Dialysis/ Cold precipitation	500- 600	40% / 20-30% in methanol/hexane	2018	S1
o-Phenylenediamine, L-tyrosine/dopamine	200 °C, 8 h in water (Hydrothermal)	Filtration, evaporation, dialysis	555- 594/ 650	86.4% / 17.6% in methanol	2021	S2
Citric acid, dicyandiamide, 3- aminopropyltriethoxysilane	200 °C, 12 h in a mixture of ethanol and water (Solvothermal)	Centrifugation, washing with water and ethanol	517	49% in organosilicon matrix	2022	S3
Citric acid, urea	Microwave heating, 5 min, in water	Filtration	500- 562	-	2017	S4
Citric acid, urea	Microwave heating, 5 min, in water	Filtration	420- 560	80% in water	2018	S5
Nitrated pyrenes, boric acid / citric acid, urea, CaCl ₂	180 °C, 12 h in Dimethylformamide / Gradually heated to 250 °C under vacuum (Solvothermal)	Centrifugation, redispersion / Centrifugation, dialysis, drying,	550- 700 / 450- 650	65% in toluene / -	2023	S6
Citric acid, urea, CaCl2	Microwave heating, 2-6 min	Filtration, centrifugation, dialysis	406- 550	15-73% in ethanol	2024	S7
Citric acid, L-cysteamine hydrochloride / Citric acid, urea / 1,3,5-Benzenetricarboxylic acid, 3,4,9,10- perylenetetracarboxylic dianhydride	Vacuum heating/Solvothermal	Silica gel chromatography, dialysis	495 / 516 / 584	90-72% in ethanol	2024	S8
Citric acid, urea, CaCl2	Space-confined vacuum heating	Centrifugation, dialysis	500	65% in methanol	2021	S9
<i>p</i> -Phenylenediamine	250 °C, 12 h in diphenyl ether (Ambient air heating)	Centrifugation and silica gel column chromatography	540	56% / 30-56% in chloroform / ethylene-vinyl acetate copolymer		This work

Fig. S1 Photographs of black suspension under white light and 365 nm UV light.

Crude CDs : 154 mg

Purified CDs : 50 mg

Fig. S2 Photographs of crude CDs and purified CDs

Left : White light Right : 365nm UV light

Fig. S3 Purification of crude CDs by silica gel column chromatography.

Fig. S4 Evaluation of LSC device with CDs@EVA films.

Fig. S5 Change in spectral irradiance (red) and photon flux (blue) of AM1.5G simulated sunlight as a function of wavelength.

Fig. S6 FE-TEM image of purified CDs and their size distribution.

Fig. S7 FT-IR spectra of *p*-PD and purified CDs.

Fig. S8 Photographs of *p*-PD chloroform solution under the white light and 365 nm UV light.

Fig. S9 UV-vis spectrum, PL/PLE mapping, and three-dimensional PL/PLE spectrum of the *p*-PD chloroform solution.

Table S2 PL/PLE properties of three different synthesized and purified CDs inchloroform.

Sample No.	λ_{ex} (nm)	λ_{em} (nm)	Storks shift (nm)	PLQY (%)
1	470	550	80	53
2	470	549	79	60
3	470	550	80	55
Average	470	550	80	56

Fig. S10 PL spectra for evaluating the PLQY of the purified CDs in chloroform.

Fig. S11 PL/PLE mapping and three-dimensional PL/PLE spectra of the purified CDs in chloroform.

Sample name	CD concentration	Volume (mL)	Film thickness (µm)	λ _{em} (nm)	PLQY (%)
	(wt%)				
EVA	0.00	5	148 ± 2	-	-
CDs@EVA #1	0.05	5	140 ± 2	493	56
CDs@EVA #2	0.05	10	275 ± 1	493	50
CDs@EVA #3	0.05	15	408 ± 2	493	49
CDs@EVA #4	0.05	20	488 ± 3	493	49
CDs@EVA #5	0.10	5	132 ± 2	490	39
CDs@EVA #6	0.10	10	294 ± 3	490	36
CDs@EVA #7	0.10	15	421 ± 4	490	35
CDs@EVA #8	0.15	5	137 ± 2	486	35
CDs@EVA #9	0.15	10	283 ± 2	486	32
CDs@EVA #10	0.15	15	409 ± 3	486	30

Table S3 The used volumes of EVA solution containing CDs, film thicknesses, emission peak wavelengths, λ_{em} , and PLQYs for the films with different CD concentrations.

White light

Fig. S12A Photographs of CDs@EVA films with different CD concentrations and

thicknesses under white light.

UV light

Fig. S12B Photographs of CDs@EVA films with different CD concentrations and

thicknesses under 365 nm UV light.

Fig. S13 In-line transmission (solid lines) and total transmission (dashed lines) spectra, and in-line absorbance (solid lines) and total absorbance (dashed lines) spectra of EVA and CDs@EVA films with different CD concentrations and thicknesses.

Fig. S14 Change in in-line absorbance of CD@EVA films with different CD concentrations (0.05 wt%, 0.10 wt%, and 0.15 wt%) as a function of film thickness.

Fig. S15 Change in total absorbance of CD@EVA films with different CD concentrations (0.05 wt%, 0.10 wt%, and 0.15 wt%) as a function of film thickness.

Fig. S16 PL and PLE spectra of CDs@EVA films with different CD concentrations and thicknesses.

Fig. S17 PL spectra for evaluating the PLQY of CDs@EVA #3 film.

Fig. S18 Change in PLQYs of CD@EVA films with varying CD concentrations (0.05 wt%, 0.10 wt%, and 0.15 wt%) as a function of film thickness.

Fig. S19 I-V curves of CDs@EVA films with different CD concentrations and thicknesses.

Sample	$I_{ m sc}$	$V_{ m oc}$	FF	η
	(mA)	(V)		(%)
No film	$0.733 {\pm} 0.0004$	0.465 ± 0.00026	0.684 ± 0.0007	0.0190 ± 0.00001
EVA	0.774 ± 0.0006	0.465 ± 0.00004	0.684 ± 0.0005	0.0202 ± 0.00004
CDs@EVA #1	0.809 ± 0.0071	0.469 ± 0.00026	0.686 ± 0.0004	0.0212 ± 0.00020
CDs@EVA #2	0.845 ± 0.0094	0.470 ± 0.00064	0.688 ± 0.0019	$0.0223 {\pm} 0.00031$
CDs@EVA #3	$0.855 {\pm} 0.0092$	0.471 ± 0.00064	0.688 ± 0.0013	0.0226 ± 0.00031
CDs@EVA #4	$0.843{\pm}0.0091$	$0.471 {\pm} 0.00038$	0.688 ± 0.0013	0.0223 ± 0.00030
CDs@EVA #5	$0.785 {\pm} 0.0035$	0.468 ± 0.00064	0.685 ± 0.0013	0.0206 ± 0.00015
CDs@EVA #6	0.780 ± 0.0043	0.467 ± 0.00059	0.685 ± 0.0021	0.0204 ± 0.00019
CDs@EVA #7	0.745 ± 0.0048	0.465 ± 0.00057	$0.683 {\pm} 0.0012$	$0.0193 {\pm} 0.00018$
CDs@EVA #8	$0.740{\pm}0.0045$	0.462 ± 0.00010	0.681 ± 0.0006	0.0190 ± 0.00013
CDs@EVA #9	$0.706 {\pm} 0.0048$	0.459 ± 0.00025	$0.679 {\pm} 0.0012$	0.0180 ± 0.00016
CDs@EVA #10	0.682 ± 0.0033	$0.458 {\pm} 0.00019$	$0.678 {\pm} 0.0010$	$0.0173 {\pm} 0.00011$

Table S4 Results of I-V curve measurements for LSC applications

Fig. S20 Change in short-circuit currents of CD@EVA films with varying CD concentrations (0.05 wt%, 0.10 wt%, and 0.15 wt%) as a function of film thickness. Dashed lines represent reference values for no film and EVA film.

Fig. S21 Change in η of CD@EVA films with different CD concentrations (0.05 wt%, 0.10 wt%, and 0.15 wt%) as a function of film thickness. Dashed lines represent reference values for no film and EVA film.

Fig. S22 IPCE spectra of CDs@EVA films with different CD concentrations and thicknesses.

Fig. S23 Transmission spectrum of soda glass plate (10 mm thickness).

Fig. S24 Change in maximum IPCE values of CD@EVA films with different CD concentrations (0.05 wt%, 0.10 wt%, and 0.15 wt%) as a function of film thickness. Dashed lines represent reference values for no film and EVA film.

Fig. S25 Change in PL intensity of CD chloroform dispersion and CDs@EVA #3 film under the continuous optimal excitation.

References

- S1 Y. Zhou, D. Benetti, X. Tong, L. Jin, Z. M. Wang, D. Ma, H. Zhao and F. Rosei, Nano Energy, 2018, 44, 378-387.
- S2 J. Li, H. Zhao, X. Zhao and X. Gong, Nanoscale, 2021, 13, 9561-9569.
- S3 Y. Wu, Y. Zhan, W. Xin, W. Cao, J. Li, M. Chen, X. Jiang, J. Wang and Z. Sun, ACS Appl. Energy Mater., 2022, 5, 1781-1792.
- S4 Y. Li, P. Miao, W. Zhou, X. Gong and X. Zhao, J. Mater. Chem. A, 2017, 5, 21452-21459.
- S5 Z. Wang, X. Zhao, Z. Guo, P. Miao and X. Gong, Org. Electron., 2018, 62, 284-289.
- S6 G. Liu, M. Zavelani-Rossi, G. Han, H. Zhao and A. Vomiero, *J. Mater. Chem. A*, 2023, **11**, 8950-8960.
- S7 W. Li, X. Wang, J. Lin, X. Meng, L. Wang, M. Wang, Q. Jing, Y. Song, A. Vomiero and H. Zhao, *Nano Energy*, 2024, **122**, 109289.
- S8 J. Lin, L. Wang, Q. Jing and H. Zhao, Chem. Eng. J., 2024, 481, 148441.
- S9 H. Zhao, G. Liu, S. You, F. V. Camargo, M. Zavelani-Rossi, X. Wang, C. Sun, B. Liu, Y. Zhang and G. Han, *Energy Environ. Sci.*, 2021, 14, 396-406.