Supplementary Information

Ultra-high nonlinear absorption coefficients based on multiphoton-excited self-trapped excitons in perovskiteinspired copper halides

Maolan Peng, ^a Xiaoming Mo, ^{*a} Liu Tan, ^a Xiaoma Tao, ^a Yifang Ouyang, ^a Yulu Zhou, ^a Yi Liang, ^a and Jialong Zhao ^a

^a Center on Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, People's Republic of China.

E-mail: Prof. X. Mo, <u>xmmo@gxu.edu.cn</u>.

Keywords: Nonlinear optical property; Upconversion luminescence; Multiphoton absorption; Self-trapped exciton; Copper halide.

Fig. S1 (a) XRD pattern of thermal-evaporated $CsCu_2I_3$ thin film. (b) XRD pattern of thermal-evaporated $Cs_3Cu_2I_5$ thin film.

Fig. S2 (a) PL and PLE spectra for thermal-evaporated $CsCu_2I_3$ thin film. (b) PL and PLE spectra for thermal-evaporated $Cs_3Cu_2I_5$ thin film.

Fig. S3 (a) TRPL decay spectra for thermal-evaporated $CsCu_2I_3$ thin film. (b) TRPL decay spectra for thermal-evaporated $Cs_3Cu_2I_5$ thin film.

Fig. S4 (a) Upconversion PL spectra excited by 840 nm laser for the thermal-evaporated $CsCu_2I_3$ thin film. Inset is dependence of the upconversion PL intensity on the laser pulse energy for the $CsCu_2I_3$ thin film. (b) upconversion PL spectra excited by 820 nm laser for the thermal-evaporated $Cs_3Cu_2I_5$ thin film. Inset is dependence of the upconversion PL intensity on the laser pulse energy for the $Cs_3Cu_2I_5$ thin film.