Supplementary Material

Multifunctional Zn-Carbon dots enhanced specific recognition and in-situ degradation of tetracycline

Tianbao Liu ^{a, b, †}, Weixuan Zhao ^{a, b, †}, Shenhua Meng^a, Biao Dong^c, Nan Shi ^{d,*} and Weiguang Shi ^{a, b,*}

 ^a State Key Laboratory of Continental Shale Oil, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China;

^b Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient
Development, Ministry of Education, Northeast Petroleum University, Daqing,
163318, China;

^c State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;

^d Department of Respiratory Medicine, No. 964 Hospital of People's Liberation Army, 4799 Xi'an Road, Changchun 130062, China

[†] These authors contributed equally to this work and should be considered co-first authors.

* Correspondence: sswwgg2003@126.com; 1350432785@163.com

Figure S1. Synthesis flow chart of Zn-CDs.

Figure S2. The flow chart of Zn-CDs for photocatalytic and Fenton-like degradation of tetracycline.

Figure S3. TEM (a) CDs, (b) Zn-CDs

Figure S4. CDs (a) TEM of CDs, (b) Particle size distribution histogram of CDs.

Figure S5. The influence factors of fluorescence properties for Zn-CDs: (a) The concentration of 1.0 G PAMAM; (b) The concentration of acrylic acid; (c) The concentration of ZnCl2. The influence of reaction conditions on the Zn-CDs fluorescence intensity: (d) Temperature; (e) Time. (f) Comparison of fluorescence intensity between Zn-CDs and quinine sulfate standard QY samples.

Figure S6. The fluorescence emission intensity of Zn-CDs varies under different environments (a)

ultraviolet irradiation time, (b) NaCl concentrations, (c) pH, and (d) H_2O_2 concentrations.

Figure S7. Recognition of tetracycline by pure carbon dots.

Name of CDs	Detection limit	Quantum yield	Reference
N-CQDs	60 nM	18 %	S[1]
N-CQDs	0.34 μΜ	10.97%	S[2]
F -CQD	85 nM	39%	S[3]
CQDs@MSNs	5.19 µM	/	S[4]
Zn-CDs	25 nM	28.6%	This work

Table S1. Comparison of fluorescence detection of Zn-CDs for tetracycline

- S[1] John B K, John N, Korah B K, et al. Nitrogen-doped carbon quantum dots as a highly selective fluorescent and electrochemical sensor for tetracycline[J]. *Journal of Photochemistry and Photobiology A: Chemistry*, 2022, 432, 114060.
- S[2] Wang C, Sun Q, Yang M, et al. Preparation of highly luminescent nitrogen-doped carbon quantum dots and their detection of tetracycline antibiotics[J]. *Colloids and Surfaces A: Physicochemical* and Engineering Aspects, 2022, 653, 129982.
- S[3] Huang Y, Huang X, Lin H, et al. Room temperature driven highly crystalline fluorine-doped carbon quantum dots for sensitive tetracycline sensing[J]. *Optical Materials*, 2021, **114**, 110967.
- S[4] Lu P, Hou X, Lu G A, et al. Determination of tetracycline by FRET fluorescence between chenpi carbon quantum dots and copper nanoparticles[J]. *Chinese Journal of Analytical Chemistry*, 2024, 52(10), 100440.

Item	Value ^b	Item	Value ^b
рН	8.60	Dissolved oxygen	6.9 mg/L
Pb ²⁺	0.001 mg/ L	Permanganate	8.1 mg/ L
Cu ²⁺	0.01 mg/ L	Total N	4.31 mg/ L
Zn^{2+}	0.05 mg/ L	NH ₃ -N	1.35 mg/ L
Hg^{2+}	0 mg/ L	Total F	1.29 mg/L
Cd^{2+}	0.001 mg/ L	Cyanide	0.004 mg/ L
Cr ⁶⁺	0.004 mg/ L	Volatile phenol	0.001 mg/ L
Total As	0.0003 mg/ L	Sulfide	0.01 mg/ L
Total Se	0.0004 mg/ L	0004 mg/ L Fecal coliforms	
Total P	0.62 mg/ L		

Table S2. Composition List of Lake Water ^a

^a The data were obtained from the Daqing Ecological Environment Monitoring Center in 2023.

^b The data for each item represents the average of the measured values.

	Linear range	LOD	Application	Literature
Atta-CDs-Eu	$0.05\sim 20 \ \mu M$	8.7 nM	Milk	S[5]
Cu-CDs	$2\sim 32~\mu M$	0.17 μΜ	Antibiotic tablets, Milk	S[6]
R-CDs	$3\sim 40 \ \mu M$	38.5 nM	Milk	S[7]
Zn-CDs	$50~nM \sim 100~\mu M$	25 nM	Tap water, Lake water	this work

Table S3. Comparison of tetracycline detection performance with fluorescence detection materials

- S[5] Y. Sang; Wang, K.; Kong, X.; Cheng, F.; Zhou, C.; Li, W., Color-multiplexing europium doped carbon dots for highly selective and dosage-sensitive cascade visualization of tetracycline and Al³⁺. Sensors and Actuators B: Chemical. 2022, 362, 131780.
- S[6] J. Guo; Lu, W.; Zhang, H.; Meng, Y.; Du, F.; Shuang, S.; Dong, C., Copper doped carbon dots as the multi-functional fluorescent sensing platform for tetracyclines and pH. Sensors and Actuators B: Chemical, 2021, 330, 129360.
- S[7] B. Wang; Gu, C.; Jiao, Y.; Gao, Y.; Liu, X.; Guo, J.; Qian, T., Novel preparation of red fluorescent carbon dots for tetracycline sensing and its application in trace determination. *Talanta*, 2023, 253, 123975.