Supporting information

Boosting Charge Transfer with MoS₂-Grafted MXene Interlayer for High-Efficiency All-Inorganic CsPbBr₃ Perovskite Solar Cells with an Ultrahigh Voltage of 1.701V

Qingwei Zhou^{a,b,*}, Hansheng Li^{a,b}, Fan Wu^{a,b}, Dan Chen^{a,b}, Fang Luo^{a,b}, Chucai Guo^{a,b,*}, Zhihong Zhu^{a,b}

 ^a College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
 ^b Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China

*Corresponding Author *Email addresses*: zqw2100@163.com (Q. Zhou); gcc_1981@163.com (C. Guo)

Characterizations

The morphologies were obtained by a field emission SEM (Hitachi S4800) and TEM (Tecnai G2 F20). The X-ray photo electron spectroscopy (XPS) spectra were characterized using a multifunctional imaging electron spectrometer (Thermo ESCALAB 250XI) with an Al Ka x-ray source. The element analysis was carried out using SEM (FEI QUANTA250 and Zeiss Gemini300). The AFM image was obtained by AFM (Seiko SPA400). The surface potential was characterized by KPFM (Multimode 8, Bruker, German). PL spectra were recorded via a fluorescence spectrometer excited by a 350 nm laser and the TRPL spectra were characterized using a Horiba spectrometer with an excitation wavelength of 500 nm. The characteristic J-V curves of PSCs were recorded on an electrochemical workstation (CHI660E) under irradiation of simulated solar light (Newport, Oriel Class 3A, 91195A). The light intensity was controlled at 100 mW cm⁻² calibrated by a standard silicon solar cell. The IPCE spectra of various devices were obtained using an IPCE kit from Enli Technology Co., Ltd. The V_{oc} decay curves were measured at open-circuit mode by illuminating the device for several seconds, and then instantaneously switching off the light. Tafel curves and Mott-Schottky curves of various devices were measured on CHI660E electrochemical workstation.

Fig. S1. (a,b)TEM images and (c) SAED patterns of MoS₂ QDs.

Fig. S2. (a) HRTEM image and (b) SAED patterns of MXene nanoflakes

Fig. S3. Height profile of (a) MXene nanoflakes and (b) $MoS_2@MXene$ nanoflakes, insert is the corresponding AFM image.

Fig. S4. SAED patterns of MoS₂@MXene nanoflakes.

Fig. S5. HAADF image and the corresponding EDS mapping of $MoS_2@MX$ ene nanoflakes.

Fig. S6. XPS spectra of (a) Cs 3d and (b) Br 3d for CsPbBr₃ films with different modifications.

Fig. S7. (a, b) UV-Vis absorption spectra and (c) CV curves of (a) MoS_2 QDs. The inset image is the photographs of the MoS_2 QDs before and after illumination (365 nm).

Fig. S8. Ultraviolet photoelectron spectrum of $MoS_2@MX$ ene with a work function of -5.01 eV.

Fig. S9. Steady-state power output of the PSCs.

Fig. S10. Statistical distributions of V_{oc} , J_{sc} and FF for PSCs with different modifications.

Fig. S11. *J-V* curves for the CsPbBr₃ PSCs with and without $MoS_2@MX$ ene under reverse and forward scans.

Fig. S12. EIS plots of various CsPbBr₃ PSCs.

Fig. S13. $V_{\rm oc}$ decay curves of various CsPbBr₃ PSCs.

Fig. S14. SEM image and the corresponding EDS mapping images of $CsPbBr_3$ perovskite film with $MoS_2@MX$ ene modification.

$V_{oc}(V)$	J _{sc} (mA/cm ²)	PCE (%)	FF (%)
1.524	7.00	8.24	77.2
1.492	7.41	5.91	53.5
1.651	7.75	10.03	78.4
1.595	8.00	8.39	65.8
	V _{oc} (V) 1.524 1.492 1.651 1.595	V_{oc} (V) J_{sc} (mA/cm2)1.5247.001.4927.411.6517.751.5958.00	V_{oc} (V) J_{sc} (mA/cm2)PCE (%)1.5247.008.241.4927.415.911.6517.7510.031.5958.008.39

 Table S1. Photovoltaic parameters for PSCs under reverse and forward scans.

Device	$\tau_1(ns)$	a_1	$\tau_2(\mathrm{ns})$	<i>a</i> ₂	$ au_{ave}$ (ns)
Pristine	0.574	66.78%	10.446	33.22%	0.836
w/ MXene	0.527	69.76%	23.664	30.24%	0.749
w/ MoS ₂ @MXene	0.486	80.61%	8.369	19.39%	0.594

Table S2. TRPL decay parameters of PSCs with and without modifications.

The TRPL decay curves in Figure 3h can be fitted by employing a biexponential function as $follows: I = Ae^{-(t-t_0)/\tau_2}$

Here, τ_1 corresponds to the faster component associated with trap-mediated nonradiative recombination, while τ_2 is related to the slower component linked to radiative recombination. To assess the electron extraction ability, the average decay time (τ_{ave}) is calculated based on the formula $\tau_{ave} = (a_1\tau_1^2 + a_2\tau_2^2)/(a_1\tau_1 + a_2\tau_2)$, where a_1 and a_2 denote the amplitudes. The specific parameters of τ_1 , τ_2 , and τ_{ave} are listed in Table S2.