Supplementary Information

Bend, Don't Break: Exploring the Mechanochromic, AIE and Non-Linear Optical Properties of Carbazole-Thiobarbituric Acid Hybrids.

Meema Rasheed,^a R Lakshmi,^b Parvathy O.C.,^a Shandev P.P.,^a Pramod Gopinath,^{*b, c}

Narayanapillai Manoj,*a, ^c

^a *Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682022, Kerala, India*

b *International School of Photonics, Cochin University of Science and Technology, Kochi 682022, Kerala, India*

c Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi-682022, Kerala, India

E-mail: *[manoj.n@cusat.ac.in,](mailto:manoj.n@cusat.ac.in) pramod@cusat.ac.in*

Table of Contents

1. Experimental Procedures

Synthesis of 5-((9-alkyl-9H-carbazol-3-yl) methylene)-2-thioxodihydropyrimidine-4,6(1H,5H) dione_(TBA conjugate)

N-alkylcarbazole-thiobarbituric acid conjugates were synthesized via Knoevenagel condensation.¹ 9-alkyl-9H-carbazole-3-carbaldehyde (1 eqv.) and thiobarbituric acid (1 eqv.) were reacted in ethanol at 60°C for 5 hours. The resulting precipitated TBA conjugate was filtered, washed with hot water, and dried under vacuum. The reaction yielded 80% of the desired product.

2. Results and discussion

Characterisation of TBA conjugates

ETBA: m.p. > 250 °C, FT-IR (KBr, v_{max} cm⁻¹): 3436, 3140, 2352, 1642, 1533. ¹**H NMR** (400 MHz, CDCl₃, δ ppm) 0.85 (t, 3H), 0.92 (t, 3H), 1.22 – 1.42 (m, 9H), 4.2 (d, 2H), 7.30 – 7.46 (m, 4H), 7.50 – 7.56 (m, 1H), 8.37 (d, 1H), 8.59 (d, 1H), 8.76 (s, 1H), 8.93 (d, 1H), 9.36 (s, 1H). **MALDI-TOF MS** (ESI MS) m/z: $[M+H]^{+}$ calcd for $C_{25}H_{27}N_{3}O_{2}S$ 434.1902, found 434.9803.

DTBA: m.p. >250 °C, **FT-IR** (KBr, v_{max} cm⁻¹): 3426, 3120, 2362, 1646, 1533. **¹H NMR** (400 MHz, DMSO-*d6*, δ ppm) 0.83 (t, 3H), 1.16 – 1.26 (m, 18H), 1.78 – 1.84 (m, 2H), 4.48 (t, 2H), 7.34 (t, 1H), 7.55 (t, 1H), 8.21 (d, 1H), 8.56 (s, 1H), 8.66 – 8.68 (m, 1H), 9.36 (s, 1H), 12.29 (s, 1H), 12.38 (s, 1H). **MALDI-TOF MS** (ESI MS) m/z: $[M+H]^+$ calcd for $C_{29}H_{36}N_3O_2S$ 490.2523, found 490.7923.

TTBA: m.p. > 250 °C, FT-IR (KBr, v_{max} cm⁻¹): 3420, 3156, 2350, 1654, 1517. **¹H NMR** (400 MHz, CDCl3, δ ppm) 0.86 (t, 3H), 1.22 – 1.41 (m, 20H), 1.71 (s, 2H), 1.89 (t, 2H), 4.33 (t, 2H), 7.38 (m, 1H), 7.43 – 7.46 (m, 2H), 7.51 -7.56 (m, 1H), 8.27 (d, 1H), 8.58 (d, 1H), 8.76 (s, 1H), 8.90 (d, 2H), 9.37 (s, 1H). **MALDI-TOF MS** (ESI MS) m/z: $[M+H]^+$ calcd for $C_{31}H_{39}N_3O_2S$ 518.2841, found 518.5560

Global-Reactivity Parameters

Valuable theoretical understanding of chemical reactivity and selectivity parameters by examining fundamental qualitative chemical concepts such as ionisation potential (IP), electron affinity (EA), electronegativity (χ), chemical potential (*μ*), global hardness (*η*), softness (*σ*), and electrophilicity index (*ω*). Molecules with higher chemical potential (*μ*) and hardness (*η*) values are considered to be kinetically stable. These parameters are directly associated with orbital Egap values and are inversely correlated with overall softness (*σ*). Additionally, GRPs can be calculated using equations 1 and 2.

$$
IP = -E_{HOMO}
$$
(1)

$$
EA = -E_{LUMO}
$$
(2)

IP and EA are the ionisation potential and electron affinity (in a.u.). Electronegativity $(χ)$, chemical hardness (η), and chemical potential (μ) have been determined using the Koopmans theorem with equations 3-5.

$$
\chi = \frac{[IP + EA]}{2} = -\frac{[E_{LUMO} + E_{HOMO}]}{2}
$$
(3)

$$
\eta = \frac{[IP - EA]}{2} = -\frac{[E_{LUMO} - E_{HOMO}]}{2}
$$
(4)

$$
\mu = \frac{E_{HOMO} + E_{LUMO}}{2}
$$
(5)

Equations 6 and 7 give the global softness (σ) and electrophilicity index (ω)

$$
\sigma = \frac{1}{2\eta}
$$
\n
$$
\omega = \frac{\mu^2}{2\eta}
$$
\n(6)

	IP	ЕA			μ	σ	ω
ETBA	0.2235	0.1054	0.1644	0.0590	-0.1644	8.4745	0.2290
DTBA	0.2234	0.1051	0.1642	0.0591	-0.1642	8.4602	0.2281
TTBA	0.2233	0.1051	0.1642	0.0591	-0.1642	8.4602	0.2281

Table 1. Global reactivity parameters of ETBA, DTBA and TTBA.

Theoretical calculations

Previous research revealed the similar molecule's twisted intramolecular charge transfer (TICT) state.² This conclusion was based on Lippert-Mataga analysis and excited-state DFT calculations. The presence of a TICT state explains the observed red shift in emission spectra in polar solvents.

Fig. 1 Diagram showing emission in TICT state of TBA conjugates in (a) Planar and (b) when excited, these molecules can twist, leading to a unique emission profile.

Chart. 1 Optimized ground state geometry of a) ETBA, b) DTBA, c) TTBA in gaseous state, d) *Anti* and *Syn* conformations of TBA conjugates

Non-Linear Optical property

Theoretical evaluation

To understand how TBA conjugates behave optically in water and THF, we used DFT methods with B3LYP and a 6-311++G(d,p) basis set to calculate their static dipole moment (μ_{total}) , total polarizability (α_{tot}), polarizability anisotropy ($\Delta \alpha$), static first-order hyperpolarizability (β_{total}), and second-order hyperpolarizability (*γ*). We assumed the molecules are in a static external electric field F, and their energy is expressed as the function of the static field F_l ³ as shown in equation 8.

$$
E(F) = E(0) - \mu_i F_i - \frac{1}{2} \alpha_{ij} F_i F_j - \frac{1}{6} \beta_{ijk} F_i F_j F_k - \frac{1}{24} \gamma_{ijkl} F_i F_j F_k F_l
$$
\n(8)

The total static dipole moment (μ_{tot}) is determined by using this equation^{4,5}: $\mu_{tot} = \sum \mu i$ $\mu_i = (\mu_{x^2} + \mu_{y^2} + \mu_{z^2})^{1/2}$ (9)

A second-rank tensor describes the polarizability; the mean or total polarizability (αtot) can be determined by solely considering the diagonal elements, as follows: 4,5

$$
\alpha_{ij} = \frac{(\alpha_{xx} + \alpha_{yy} + \alpha_{zz})}{3} \tag{10}
$$

The anisotropy of the polarizability $\Delta \alpha$ can be expressed as ^{6,7}

$$
\Delta \alpha = \frac{1}{\sqrt{2}} \sqrt{\left[(\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2 + 6(\alpha_{xy}^2 + \alpha_{yz}^2 + \alpha_{xz}^2) \right]}
$$
(11)

A third-rank tensor represents the static first-order hyperpolarizability (βtot). The 27 components of the 3D matrix can be reduced to 10 elements by Kleinman symmetry.⁸ The output file from Gaussian 03W provides the following main components: β_{xxx} , β_{xy} , β_{xy} , β_{yy} , β_{xx} , β_{yy} , β_{xzz} , β_{yz} , β_{xzz} , β_{yz} , β_{zzz} . The first hyperpolarizability (β_{tot}) is defined as equation 12.^{6,9}

$$
\beta_{ijk} = \sqrt{(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{xxy} + \beta_{yyy} + \beta_{yzz})^2 + (\beta_{xxz} + \beta_{zyy} + \beta_{zzz})^2}
$$
(12)

The average value of the static hyperpolarizability of the second order (γ_{tot}) is given by equation 13,¹⁰

$$
\frac{1}{\gamma_{ijk}} = \frac{1}{5} [\gamma_{xxxx} + \gamma_{yyy} + \gamma_{zzzz} + 2(\gamma_{xxyy} + \gamma_{yyzz} + \gamma_{xxzz})]
$$
\n(13)

Organic molecules with NLO behaviour are believed to result from strong ICT character, which allows for the transfer of electron density from donor to acceptor along a π bridge.¹¹ The organic molecule urea is commonly used as a reference material for comparing NLO properties. The β_{tot} value for urea is 37.28 x 10⁻³² esu,¹² while the *β*_{*tot*} values for our synthesised D-π-A conjugates are notably higher. This indicates that ETBA, DTBA, and TTBA are favourable candidates for NLO applications. ETBA exhibits high values of β_{tot} and γ in water and THF due to its strong ICT character,¹³ leading to enhanced nonlinearity compared to other D -π-A conjugates.

UV-Visible absorption properties

Fig. 2 Absorption spectra of (a) ETBA, (b) DTBA, (c) TTBA in $(2 \times 10^{-3} \text{ M})$ THF: H₂O ratios, (d) TBA conjugates in f_w = 90% and emission spectra, (e) at f_w = 90%, (f) plot of λ max vs. THF: H₂O (%) ratios.

Morphology studies of TBA conjugates

Fig. 3 shows the TEM morphology image of the TBA conjugates, where nanorods having uniform diameters with flat and smooth surfaces were seen in ETBA (a,b) and TTBA (e,f). In DTBA (c,d), a sheet-like structure that winds up to form a fibre bundle was observed.

Fig. 3 TEM images of the self-assembled structures of **ETBA** (a, b), **DTBA** (c,d), and **TTBA** (e,f).

Aggregate size Measurement

Fig. 4 Particle size histograms obtained from the DLS analysis for (**a**) ETBA, (**b**) DTBA and (**c**) TTBA, at *fw*=80%, 90% and 100% and the fits of the data according to a log-normal distribution (Concentration: 2×10^{-3} mol/L).

Fig. 5 Normalized emission spectra (*λex* = 450 nm) of TBA Conjugates under external stimuli, showing the grinding-induced spectral shift (Δ*λ*).

Fig. 5.1 UV-DRS spectra of TBA Conjugates under external stimuli, showing the grinding-induced spectral shift (Δ*λ*).

Scheme 2. Hydrogen-bonded dimers and trimers of TBA conjugates. H-bonding, π-stacking, and hydrophobic association assisted hierarchical assemblies of TBA conjugates in solution.

Fig. 6 1H-NMR spectra of a) ETBA, c) TTBA IN CDCl₃ and b) DTBA in DMSO at 400 MHz.

References

- 1. K. Kala, P. K. Vineetha and N. Manoj, *New J. Chem*., 2017, 41, 5176–5181.
- 2. Kala, K. *Ph. D. Thesis*, *CUSAT*. **2016**
- 3. S. Udayan, A.C. Kuriakose, P. Mary, D. Sherin, T. Manojkumar, V. Nampoori and S. Thomas, *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.*, 2022, 272, 121011.
- 4. N. Sundaraganesan, J. Karpagam, S. Sebastian and J. P. Cornard, *Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.*, 2009, 73, 11–19.
- 5. R. Zhang, B. Du, G. Sun and Y. Sun, *Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.*, 2010, 75, 1115–1124.
- 6. N. Islam and I. H. Lone, *Front. Chem.*, 2017, 5, 11.
- 7. D. S. Sabirov, *RSC Adv.*, 2014, 4, 44996–45028.
- 8. S. Cabuk, *Cent. Eur. J. Phys.*, 2012, 10, 239–252.
- 9. K. S. Thanthiriwatte and K. N. De Silva, *J. Mol. Struct. THEOCHEM*, 2002, 617, 169–175.
- 10. H. A. Kurtz, J. J. Stewart and K. M. Dieter, *J. Comput. Chem.*, 1990, 11, 82–87.
- 11. M. U. Khan, M. Ibrahim, M. Khalid, A.A.C. Braga, S. Ahmed and A. Sultan, *J. Clust. Sci.*, 2019, 30, 415–430.
- 12. B. Raaghul, M.R. Kannan and T. Vijayakumar, *IOP Conf. Ser. Mater. Sci. Eng.*, 2022, 1219, 012035.
- 13. P.K. Vineetha, A. Aswathy, E. Shiju, K. Chandrasekharan and N. Manoj, *New J. Chem.*, 2020, 44, 6142–6150.