Electronic Supplementary information

Designing symmetrically folded scaffolds of pyridazinone and triazinone derivatives linked Via N, N-diethyl-4-nitro-benzenesulfonamide: to explore luminescent materials

Vipin Kumar^[a], Krishanu Bandyopadhyay^[a], Manisha Nidhar^[b], Vishal Prasad Sharma^[a], Priyanka Yadav^[a], Suman Gill^[a], Priyanka sonker^[a], Abhineet Verma^[c], Satyen Saha^{*[a]}, Ashish Kumar Tewari^{*[a]}

^[a]Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India, ^[b]Amrita School of Pharmacy, Amrita Vishwa, Vidhyapeetham, AIMS, Health Science Campus, Kochi-682041, India ^[c]Department of Chemistry, Malviya National Institute of Technology Jaipur-302017, India

E-mail: ashishtewarichem@gmail.com, satyen.saha@gmail.com

Contents

- > Experimental
- Copies of ¹H NMR and ¹³C NMR spectra
- Crystallographic details
- Hirshfeld Surface Analysis
- > TD DFT calculations of DP, DT, DPM, and DTM
- Photophysical study
- ➢ References

Experimental Section

General information

All the reagents were purchased from Sigma Aldrich and were used without further purification. Reactions were conducted at an ambient temperature and monitored by thinlayer chromatography (TLC) over silica gel G UV active plates. The melting points of compounds were checked by the Buchi melting apparatus and uncorrected.

Characterization

¹H and ¹³C NMR spectra were recorded in $CDCl_3$ on JEOL Resonance ECZ500R NMR spectrometer. Mass spectra were recorded on a SCIEX X500R QTOF mass spectrometry. Raman study was done by Horiba LabRam HR evolution spectrometer. The sample was

irradiated with the 633 nm output from a He\Ne laser (30 mW, 1800 groves/mm grating, slit width 200 μ m) and Peltier cooled (-60 °C) CCD detector (model: Syncerity 356399, manufactured by Horiba Instrument Inc.) was used.

Photophysical properties

Steady-state UV-visible absorption spectra were measured by Cary 100 Bio, Agilent in the 200–800 nm range. The instrument has photometric linearity till absorbance 3.5 and has a wavelength resolution of 0.2 nm. Fluorescence spectrophotometry (Fluorolog 3-21, Horiba Scientific) was used for fluorescence measurements in solution states.

X-ray Diffraction measurement

SCXRD data was collected on a Rigaku: XtaLAB Synergy-i diffractometer Cu-K α radiation (K α = 1.54184 Å) for all compounds. All the atoms were refined with anisotropic thermal parameters except the hydrogen atoms. Hydrogen atoms were set to ride on the parent atoms after placing them

in idealized positions around the respective parent atoms. The absence of additional symmetry and voids was confirmed using PLATON (ADDSYM).¹ The structures were solved by direct methods and refined by full-matrix least-squares on F2 using the latest version of SHELX-2019.² The packing diagrams were generated using Mercury version 3.1.³ The refinement converged to the final values of R1 & wR2 and the crystallographic parameter of compound DP, DT, DPM, and DTM are depicted in Table S1. PLATON analyzed the bond lengths, angles, and other geometrical parameters.

Computational methods: The theoretical calculations to obtain possible conformational structures of the compounds in the gas phase were performed with a well-known method DFT/B3LYP level of theory available in Gaussian09 software. The 6-31G++(d,p) basis set was used during complete computations. The self-consistent field (SCF) equation was solved iteratively to get the optimized geometries whose energies were found minimal on the potential energy surface.

Synthetic procedures

5,6-bis(4-methoxyphenyl)-3-oxo-2,3-dihydropyridazine-4-carbonitrile (PYZ-OMe): Synthesis of methoxy substituted pyridazinone, a mixture of cyanoacetohydrazide (1 mmol, synthesized by mixing of hydrazine hydrate and cyanoethyl acetate at 0°C), potassium carbonate (1 mmol), and p-Anisil (1 mmol) was added in the 100 ml round bottom flask. The reaction mixture was heated at 110°C for 10-15 minutes. The completion of the reaction was monitored via TLC. The reaction mixture was poured into ice-cold water neutralized by HCl and filtered. The residue was washed with water, dried, and recrystallization from ethyl acetate to obtain a pure product. ¹H-NMR (500 MHz, CDCl₃ δ , ppm): δ 12.72 (s, 1H), 7.16 (d, *J* = 9.3 Hz, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 3.82 (s, 3H), 3.77 (s, 3H). ¹³C NMR (126 MHz, CDCl₃ δ , ppm) δ 160.94, 159.77, 157.80, 151.34, 145.86, 131.94, 130.44, 130.29, 126.84, 124.88, 114.09, 113.94, 113.38, 55.05, 54.94. (Fig. S1, a and b)

5,6-bis(4-methoxyphenyl)-1,2,4-triazin-3(2H)-one (TYZ-OMe): Synthesis of methoxy substituted triazinone, a mixture of semicarbazide (1 mmol), p-Anisil (1 mmol) and ethanol was added in a 100-round bottom flask. The mixture was heated at 110°C for 2h. The completion of the reaction was monitored via TLC. The reaction mixture was poured into ice-cold water. The residue was washed with water, dried, and recrystallized ethyl acetate to obtain a pure product. ¹H-NMR (500 MHz, CDCl₃ δ, ppm): δ 13.07 (s, 1H), 7.36 (d, *J* = 125.4 Hz, 4H), 6.80 (d, *J* = 9.3 Hz, 4H), 3.82 (s, 6H). ¹³C NMR (126 MHz, CDCl₃ δ, ppm) δ 166.45, 162.19, 160.08, 154.30, 142.25, 131.81, 130.10, 127.68, 127.03, 113.77, 113.49, 55.31, 55.21. (Fig. S2, a and b)

N, *N*-bis(2-chloroethyl)-4-nitro benzenesulfonamide (BPN): In 100 ml round bottom flask, pnitro sulphonyl chloride and Bis(2-Chloroethyl) amine hydrochloride were dissolved in TEA/DCM for 5h at room temperature and completion of reaction monitored via TLC. The reaction mixture was poured into the ice-cold water to obtain the precipitate. The residue was filtered, washed with water, and dried at room temperature. Pyridazinone and triazinone were synthesized using a previously described method.^{4,5} ¹H-NMR (500 MHz, CDCl₃ δ , ppm): δ 8.39 (d, J = 8.8 Hz, 1H), 8.05 (d, J = 8.9 Hz, 1H), 3.71 (t, J = 6.7 Hz, 2H), 3.58 (t, J = 6.6 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃ δ , ppm) δ 150.47, 144.81, 128.62, 124.71, 51.32, 41.96 (ESI Fig. S3, a and b).

N, *N-bis*(2-(5-cyano-6-oxo-3,4-diphenylpyridazin-1(6H)-yl)ethyl)-4-nitrobenzenesulfonamide (DP): In a 200 ml round bottom flask, anhydrous potassium carbonate (1 mmol) and heteroaromatic compounds (1 mmol) were added to a small amount of dry DMF, and the mixture was agitated for 30 minutes. After that, compound BPN (0.5 mmol) was added to the mixture, and agitated was maintained for the next 15-20 hours. After completion, the reaction was monitored via TLC, and DMF was removed in vacuo after the reaction was finished. Column chromatography was applied to isolate the desired products. All the compounds DT, DPM, and DTM were synthesized in a similar fashion presented in Scheme 1. Yield: 85%, M.P.: $142(\pm1)^{\circ}$ C, White solid, ¹H-NMR (500 MHz, CDCl₃ δ , ppm): δ 8.25 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.37 – 7.31 (m, 3H), 7.24 (d, J = 7.8 Hz, 2H), 7.17 (d, J = 7.3 Hz, 2H), 7.10 (d, J = 7.4 Hz, 2H), 4.58 (t, J = 5.7 Hz, 2H), 3.92 (t, J = 5.6 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃ δ , ppm) δ 157.15, 151.74, 150.25, 146.74, 145.31, 134.20, 132.41, 130.72, 129.40, 129.34, 129.07, 128.94, 128.48, 128.43, 124.67, 113.89, 113.20, 50.89, 46.18. (Fig. S4, a and b). HRMS(ESI): m/z: [M + H]⁺ calculated for C₄₄H₃₂N₈O₆S: 801.2244; found: 801.2260. Elemental Analysis for C₄₄H₃₂N₈O₆S: C, 65.99; H, 4.03; N, 13.99%; found C, 65.43; H, 4.16; N, 14.24%.

4-nitro-N, N-bis(2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)-yl)ethyl)benzenesulfonamid (DT): Yield: 72%, M.P.: 155(±1)°C, White solid, ¹H-NMR (500 MHz, CDCl₃ δ, ppm): δ 8.13 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.43-7.39 (dd, J = 15.3, 7.4 Hz, 4H), 7.34 (t, J = 7.4 Hz, 2H), 7.31 – 7.26 (m, 4H), 4.51 (t, J = 5.1 Hz, 2H), 4.00 (t, J = 5.1 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃ δ, ppm) δ 167.10, 153.31, 149.90, 145.41, 143.14, 134.74, 133.92, 131.76, 129.97, 129.58, 128.94, 128.67, 128.32, 128.28, 124.48, 50.82, 45.37. (Fig. S5, a and b)

HRMS(ESI): m/z: $[M + H]^+$ calculated for $C_{40}H_{32}N_8O_6S$: 753.2244; Found: 753.2231.

Elemental Analysis $C_{40}H_{32}N_8O_6S$: C, 63.82; H, 4.28; N, 14.89%; found: c, 63.59; H, 4.51; N, 14.81%.

N,N-bis(2-(5-cyano-3,4-bis (4-methoxy phenyl) – 6 -oxo pyridazin- 1(6 H)-yl) ethyl)-4nitrobenzene sulfonamide (DPM): Yield: 78%, M.P.: $151(\pm1)^{\circ}$ C, Pale yellow solid, ¹H-NMR (500 MHz, CDCl₃ δ, ppm): δ 8.18 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.09 (d, J = 8.6 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 7.9 Hz, 2H), 4.51 (t, J = 5.9 Hz, 2H), 3.89 (t, J = 5.9 Hz, 2H), 3.80 (s, 3H), 3.77 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃ δ, ppm) δ 161.46, 160.38, 157.23, 151.41, 150.11, 146.53, 145.40, 130.98, 130.75, 128.45, 126.73, 124.56, 124.53, 114.36, 113.87, 113.71, 112.99, 55.48, 55.41, 50.60, 46.00. (Fig. S6, a and b) HRMS(ESI): *m/z*: [M + H]⁺ calculated for C₄₈H₄₀N₈O₁₀S: 921.2666; Found: 921.2715. Elemental Analysis for C₄₈H₄₀N₈O₁₀S: C, 62.60; H, 4.38; N, 12.17%; found: C, 62.71; H, 4.30; N, 12.02%.

N,N-bis(2-(5,6-bis(4-methoxyphenyl)-3-oxo-1,2,4-triazin-2(3H)-yl)ethyl)-4nitrobenzenesulfonamide (DTM): Yield: 80%, M.P.: 150(±1)°C, Yellow solid, ¹H-NMR (500 MHz, CDCl₃ δ, ppm): δ 8.07 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.43 (d, J = 9.0 Hz, 2H), 7.20 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 6.76 (d, J = 8.3 Hz, 2H), 4.44 (t, J = 5.7 Hz, 2H), 3.98 (t, J = 5.6 Hz, 2H), 3.82 (s, 3H), 3.80 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃ δ, ppm) δ 166.05, 162.83, 160.66, 153.51, 149.85, 145.64, 142.87, 132.26, 130.35, 128.31, 127.11, 126.73, 124.49, 114.24, 113.85, 55.55, 55.49, 50.53, 45.20. (Fig. S7, a and b)

HRMS(ESI): m/z: [M + H]⁺ calculated for C₄₄H₄₀N₈O₁₀S: 873.2666; found: 873.2749.

Elemental Analysis for C₄₄H₄₀N₈O₁₀S: C, 60.54; H, 4.62; N, 12.84%; found: C, 60.51; H, 4.69; N, 12.77%.

Fig. S1 (b): ¹³C NMR of 5,6-bis(4-methoxyphenyl)-3-oxo-2,3-dihydropyridazine-4-carbonitrile (Pyz-OMe)

Fig. S4 (a): ¹H NMR of N,N-bis(2-(5-cyano-6-oxo-3,4-diphenylpyridazin-1(6H)-yl)ethyl)-4nitrobenzenesulfonamide (DP)

nitrobenzenesulfonamide (DP)

Fig. S5 (a): ¹H NMR of 4-nitro-N,N-bis(2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)yl)ethyl)benzenesulfonamid (DT).

Fig. S5 (b): ¹³C NMR of 4-nitro-N,N-bis(2-(3-oxo-5,6-diphenyl-1,2,4-triazin-2(3H)yl)ethyl)benzenesulfonamid (DT).

Fig. S6 (a): ¹H NMR of N,N-bis(2-(5-cyano-3,4-bis(4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl)ethyl)-4nitrobenzenesulfonamide (DPM).

Fig. S6 (b): ¹³C NMR of N,N-bis(2-(5-cyano-3,4-bis(4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl)ethyl)-4-nitrobenzenesulfonamide (DPM).

Fig. S7 (a): ¹H NMR of N, N-bis(2-(5,6-bis(4-methoxyphenyl)-3-oxo-1,2,4-triazin-2(3H)-yl)ethyl)-4nitrobenzenesulfonamide (DTM).

Fig. S7 (b): ¹³C NMR of N, N-bis(2-(5,6-bis(4-methoxyphenyl)-3-oxo-1,2,4-triazin-2(3H)-yl)ethyl)-4nitrobenzenesulfonamide (DTM).

Fig. S8: Temperature-dependent ¹H NMR stacked spectra of the compound DPM, recorded at 500MHz in CDCl₃ (249-300K).

Table S1. Crystal da	ta and structure refir	nement for the compo	ounds.	
Crystal data	DP	DT	DPM	DTM
Empirical formula	$C_{44}H_{32}N_8O_6S$	2(C ₄₀ H ₃₂ N ₈ O ₆ S)	$C_{48}H_{40}N_8O_{10}S$	C ₄₄ H ₄₀ N ₈ O ₁₀ S
F.W.	800.83	1505.63	920.94	940.44
CCDC No.	2219084	2300044	2300051	2298730
Crystal System	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	P21/c	P21/c	P1	P1
Т(К)	293	293	293(2)	293
a (Å)	19.1248 (2)	19.8963 (9)	10.4679(3)	11.29667 (11)
b (Å)	9.6274 (10)	23.786 (1)	13.6068(4)	12.50697 (11)
c (Å)	25.5382 (3)	17.7301 (8)	19.0674(7)	16.65629 (15)
α, β, γ (°)	90,	90,	69.406(3) <i>,</i>	82.1895 (7),
	102.5220 (10),	105.279 (5),	81.975(3),	74.1486 (8),
	90	90	67.586(3)	78.7063 (8)
V(Å3)	4590.30 (9)	8094.3 (7)	2350.19(15)	2211.51 (4)
Dcalc (mg m -3)	1.159	1.236	1.301	1.363
Z	4	4	2	2
μ (mm-¹)	1.06	1.17	1.169	1.24
GOF on F ²	1.075	1.591	1.036	1.889
wR (F²)	0.035	0.154	0.061	<u>0.094</u>
$R_w (F_o^2)^b$	0.109	0.449	0.188	0.324
$\frac{\mathbf{P}_{\mathrm{R}}}{ \mathbf{P}_{\mathrm{o}} - \mathbf{F}_{\mathrm{c}} /2}$	$\Sigma F_o $; ^b wR ₂ = [Σ [w(F ₀	$\int_{0}^{2} - F_{c}^{2})^{2} / \Sigma[w(F_{o}^{2})]^{2}$	²] ^{1/2} .	

Fig. S10: The asymmetric unit of compound DT stabilized by C-H··· π and C-H···O the intermolecular interactions.

Table S2: Representation of key bonds and angles showing intra-molecular interactions in their crystal structure and optimized structures at the DFT/B3LYP level of theory of compounds DP, DT, DPM, and DTM.

S. No.	D-H···A	Cry	Crystal structure			Optimized structure		
		Н…А	D…A	D-H…A	H…A	D…A	D-H…A	
		(Å)	(Å)	(°)	(Å)	(Å)	(°)	
		Compour	nd DP					
1	(Pyridazinone centroid) $\pi \cdots \pi$ (centroid of PNS)		3.717			4.130		
2	(C38N7 centroid) $\pi \cdots \pi$ (O5N8O6 centroid)		3.751			5.024		
3	СЗНЗ…О2	2.757	3.652	161.95	2.632	3.630	152.62	
4	C20H20B…O1	2.512	2.883	102.59	2.381	2.877	10593	
5	C1H1B…O2	2.323	2.816	110.64	2.313	2.865	109.38	
6	C43H43… π (C38N7 centroid)	3.377	3.583	95.17	3.309	3.860	112.81	
7	C2H2B…π (C18O3 centroid)	2.358	2.557	90.46	2.300	2.555	90.59	
8	C1H1A…N6	2.694	3.407	130.39	2.766	3.585	131.28	
9	C1H1B…N2	2.724	3.004	97.20	2.763	3.045	94.31	
10	C44H44…O1	2.547	2.900	102.91	2.573	2.962	100.13	
11	C40H40…O2	2.639	2.953	100.46	2.548	2.945	100.48	
12	C14H14B…O48	2.373	2.781	104.65	2.227	2.774	105.45	
13	С2Н2В…ОЗ	2.554	2.759	91.7	2.521	2.735	89.27	
		Compour	nd DT					
1	(Triazinone centroid) π…π (PNS)		3.654			3.745		
2	(Triazinone centroid) $\pi \cdots \pi$ (S1O2 centroid)		3.351			3.627		
3	C17H17A…O1	2.429	2.888	108.46	2.426	2.928	106.44	
4	C24H24B···O2	2.730	2.800	106.27	2.328	2.830	106.07	
5	C40H…N7	2.795	2.940	90.20	2.769	2.930	87.51	
6	C34H…N8	2.592	2.866	97.55	2.610	2.856	94.34	
7	C25H25…AO6	2.460	2.741	96.26	2.444	2.750	94.34	
8	C24H24B…O6	2.886	3.335	109.39	2.793	3.304	108.54	
9	C24H24A…O1	2.705	3.314	121.27	2.670	3.387	122.62	
10	C16H16A…O1	2.422	2.773	100.77	2.773	2.414	98.75	
11	С5Н …π (О5N5O4)	3.094	3.560	112.88	2.838	3.392	111.71	
12	C40H …π (S1O3)	3.436	4.229	144.73	3.146	4.140	152.52	
		Compound	d DPM					
1	(S1O4 centroid) π…π (Pyridazinone centroid)		3.444			3.825		
2	$(02N709) \pi \cdots \pi (\text{phenvl ring})$		3.468					
3	C26H26A…N8	2.770	3.034	96.90	2.777	3.050	94.01	
4	C26H26A…O4	2.505	2.872	102.44	2.426	2.917	105.70	
5	С20Н20В…О1	2,489	2,908	105.83	2.361	2,942	111.56	

6	C22H22B…O6	2.479	2.744	95.29	2.407	2.743	95.96
7	C26H26A…π (S1O4 centroid)	2.686	2.483	91.25	2.432	2.715	98.87
8	C2H2…π (Phenyl centroid)	3.269	3.653	107.21	3.208	3.737	110.95
9	C32H32 ···π (Phenyl centroid)	3.609	3.842	97.40	3.510	2.892	102.50
10	C46H46…π (Phenyl centroid)	3.471	3.839	106.47	3.366	3.794	104.97
11	C7H7…π (C17N7 centroid)	2.940	3.268	102.33	2.882	3.210	97.54
12	C31H31…π (C48N3 centroid)	3.285	3.420	90.39	2.907	3.225	97.02
	(Compound	d DTM				
1	(Triazinone centroid) π…π (PNS)		3.767			4.414	
2	С5Н…О2	2.404	2.707	98.83	2.398	2.721	95.29
3	С37Н…О9	2.438	2.724	97.75	2.407	2.724	95.06
4	C19H…O10	2.729	2.993	97.29	2.497	2.924	102.15
5	C2H…O5	2.511	2.884	104.22	2.658	2.997	97.47
6	C30H30B…O10	2.396	2.855	108.49	2.421	2.871	103.05
7	C44H44B…O5	2.735	2.833	108.31	2.361	2.833	104.28
8	C28H28B…O11	2.514	2.737	92.75	2.372	2.735	97.33
9	C14H…N2	2.505	2,783	97.46	2.512	2.808	94.19
10	C36H…N4	2.746	2.904	90.29	2.799	2.942	86.63
11	C38H…N3	2.802	2.945	89.51	2.654	2.879	90.69
12	C3H···N5	2.558	2.828	97.11	2.462	2.770	94.66
13	C11H···· π (phenyl centroid)	3.026	3.718	132.54	3.096	3.766	120.72
14	C42H… π (phenyl centroid)	3.783	4.109	104.01	3.638	4.083	103.87
15	C35H… π (phenyl centroid)	2.899	3.579	131.08	3.109	3.855	126.58
16	C17H… π (phenyl centroid)	3.805	4.054	98.80	3.768	4.137	107.56

Table S	3: Intermolecular H-bond geometry	paramete	rs of comp	ounds DP	, DP, DPM, and DTM.
S. No.	D-H…A	Crystal Structure			Symmetry code
				1	
		H…A	D…A	D-H…A	
		(Å)	(Å)	(°)	
	Co	ompound	DP		
1	C11H…O1	2.633	3.296	128.78	2-x, -1/2+y, 1.5-z
2	C6H6…π (Phenyl centroid)	2.885	3.770	159.26	
3	C43H43…N2	2.626	3.358	136.01	x, -1+y, z
4	C26H726…π (Phenyl centroid)	3.715	4.254	199.80	
5	C1H1…N7	2.783	3.335	116.86	
6	C28H28…(C18O2 centroid)	3.472	3.986	117.39	
7	C27H27…π (C18O3 centroid)	3.573	4.045	114.24	
8	C20H20A…π (Phenyl centroid)	3.628	4.148	116.16	
9	C12H12…O2	2.645	3.502	153.69	2-x, -1/2+y, 1.5-z
10	C10H10…π (Phenyl centroid)	3.529	4.275	137.01	
11	C25H25…π (O6N6O5 centroid)	3.475	4.310	150.73	
12	С33Н33…О4	2.483	3.392	165.59	1-x, 2-y, 1-z
13	(C28N7 centroid) π…π (C37O4 centroid)		3.296		

14	(C38N7 centroid) π···π		3.794		
	(Pyridazinone centroid)				
	Co	mpound	DT		L
		-			
1	C2H…O7	2.336	3.260	161.11	x, 1/2-y, 1/2+z
2	C10H…π (PNS)	3.079	3.794	134.92	
3	C13H…π (Phenyl centroid)	3.364	3.935	124.51	
4	C12H…π (Phenyl centroid)	4.451	4.004	120.45	
5	C54H… O4	2.682	3.492	145.98	х, у, z
6	С20Н …О9	2.691	3.498	145.82	х, у, z
7	C42H …π (Phenyl centroid)	3.036	3.788	138.45	
8	C43H…π (Phenyl centroid)	3.856	4.217	106.03	
9	C17H17A…π (Phenyl centroid)	3.639	4.458	148.57	
10	C10H…π (Phenyl centroid)	3.481	4.173	104.54	
11	С77Н …О6	2.367	3.268	169.27	х, 1/2-у, -1/2+z
12	C71H …π (Phenyl centroid)	3.366	3.969	124.66	
13	C72H …π (Phenyl centroid)	3.430	3.991	121.17	
14	C72H …π (Phenyl centroid)	3.620	3.715	132.93	
15	С56Н56А …О6	2.313	3.238	157.82	1-x, -1/2+y, 1/2-z
16	C25H25A …O7	2.265	3.154	151.89	1-x, -1/2+y, 1/2-z
17	C23H …O10	2.469	3.217	137.59	1-x, -1/2+y, 1/2-z
18	C61H… O1	2.445	3.219	140.89	1-x, -1/2+y, 1/2-z
19	С80Н… О5	2.695	3.132	109.75	1-x, -1/2+y, 1/2-z
20	С79Н… О5	2.812	3.198	105.78	
21	С5Н …012	2.679	3.111	109.21	1-x, -1/2+y, 1/2-z
22	C16H16A…π (Phenyl centroid)	2.789	2.625	144.62	
23	C24H24A…π (Phenyl centroid)	3.648	4.500	147.92	
24	C58H58B…π (Phenyl centroid)	3.624	4.453	145.05	
	Со	mpound D	PM		
		•			
1	(O9N5O7 centroid) π…π(PNS)		3.472		
2	(C28O8 centroid) π…π (C48N3		3.403		
	centroid)				
3	(Pyridazinone centroid)		3.858		
	$\pi \cdots \pi (PNS)$	0.470	4.005	400.05	
4	C45H45A ···π (phenyl centroid)	3.478	4.085	123.35	
5	C45H45C $\cdots \pi$ (phenyl centroid)	3.775	4.085	102.08	
6	C50H $\cdots \pi$ (phenyl centroid)	3.386	4.272	159.97	
/	CITHIIA ···π (pnenyl centrold)	3.039	3.721	129.16	
8	C20H20B ····O1	2.526	3.478	167.17	1-x, 1-y, 1-z
9		2.430	3.265	1/3.02	1-X, 1-Y, 1-Z
10	C30HO4	2.720	3.50/	150.83	
12	CJ20"U4	2.729	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100 77	
12		5.138 2.725	5.555 1 200	100.27	
1/	$C43\Pi43 \cdots R (C43N3 centroid)$	3.725	4.200 1 257	127.47	
15		2.233	4.55/	120 50	1_v 1_v 2 -
1/	$C_{11H11C} \dots \pi$ (phenyl centroid)	2.300	3 222	105 22	1-x, 1-y, 2-2
15		2 2 7 103	2 2 4 0	140 44	_v 1_v 1 z
1.7	C201120A03	2.344	5.549	140.44	-x, 1-y, 1-2

16	C20H20A …π (O7N5O9 centroid)	2.818 3.585 135.59		135.59	
17	C26H26B ···π (phenyl centroid)	2.912	3.811	154.58	
18	C20H20A …π (phenyl centroid)	3.780	4.476	130.96	
19	C23H23C ···π (phenyl centroid)	3.483	4.244	137.87	
20	C23H23B …π (Pyridazinone	3.704	4.031	1-3.08	
	centroid)				
21	C23H23A …π (Pyridazinone	3.707	4.031	102.85	
	centroid)				
22	C31H …O6	2.738	3.184	110.45	2-x, -y, 1-z
23	C46H …O6	2.665	3.577	166.73	2-x, -y, 1-z
24	C26H26B …π (O9N5O7 centroid)	3.370	3.955	120.72	
25	C20H20A…π (O9N5O7 centroid)	2.818	3.585	136.59	
	Со	mpound D	ΤM		
1	(Phenyl centroid) π…π (phenyl		3.733		
	centroid)				
2	(Phenyl centroid) $\pi \cdots \pi$ (PNS)		3.860		
3	(Phenyl centroid) $\pi \cdots \pi$ (phenyl		3.730		
	centroid)				
4	C32H ···π (phenyl centroid)	3.868	4.652	143.85	
6	C28H28A…O4	2.605	3.388	137.84	x, -1+y, z
7	C41H41AA…N2	2.725	3.533	142.23	
8	C41H41A… π (Triazinone	3.547	4.472	162.64	
	centroid)				
9	C41H41A…O10	2.703	3.379	127.96	x, -1+y, z
10	C42H…O11	2.643	3.544	163.30	-x, 1-y, 1-z
11	C28H28A …π (phenyl centroid)	3.748	4.394	126.47	
12	C14H… π (Triazinone centroid)	2.910	3.440	117.46	
13	C28H28B…O2	2.339	3.526	157.32	-1+x, y, z
14	C28H28B …π (O2N7O9 centroid)	3.328	4.201	150.69	
15	C43H43B…O5	2.750	3.467	155.80	
16	C36H …π (O2N7O9 centroid)	3.548	3.716	93.09	
17	C44H44B …π (O2N7O9 centroid)	2.851	3.750	152.82	
18	C21H21A…O6	2.653	3.116	110.13	2-x, 2-y, -z
19	C21H21B…O6	2.807	3.116	99.72	2-x, 2-y, -z
20	C28H28A…O4	2.609	3.389	137.64	
21	C39H39B…O11	2.750	3.666	157.92	

Table S4: Fingerprint plots and decomposed fingerprints showing various interactions of compounds

2.733

2.695

2.560

2.614

2.826

3.529

3.380

3.359

3.471

3.462

140.71

128.79

145.45

153.43

139.71

x, -1+y, z

x, -1+y, z 1-x, 2-y, 1-z

1-x, 2-y, 1-z

22

23

24

25

26

C41H41A…N2

C41H41A…O10

C41H41C…O10

C41H41B…O11

C19H19…O8

DP, DT, DPN	И, and DTM.	1	1	1
Interactio	DP	DT	DPM	DTM
n Fingerprin	de	d e	de	de
t	24 22 20 18 16 14 12 10 06 06 08 10 12 14 16 18 18 16 14 16 18 18 16 16 14 16 18 18 18 18 18 18 18 18 18 18	24 22 18 16 14 10 05 08 10 12 14 16 18 20 22 24	24 22 18 16 14 10 08 06 06 06 05 08 TO 12 14 T6 T8 20 22 24	24 22 18 16 14 10 08 06 06 05 08 TO 12 14 16 18 20 22 24
Н…Н	2.4 2.2 2.2	2.4 d é	24 4 é	24 4 é
С…Н	24 d é 22 20	2.4 d é 2.2 2.0	24 d é 22 20	24 d é 22 20
C…C	2.4 e 2.2 2.0	24 d e 22 20	24 d e 22 20 d e	24 d e 22 20
N…H	2.4 e 2.2 2.0	24 22 20	24 22 20	24 4 6 1 1 1 1 1 1 1 1 1 1
0…Н				

Table S5 UV-vis at	Energy E sorption e	(eV), Wavele energy trans	ngth λ(nm), and (itions at the TD-D	Oscillator Strength (f) of the s elected FT/B3LYP level for compounds in the		
gaseous	phase ace	tonitrile.				
	DP					
Excited	λ/nm	E/eV	f	Major contribution		
state						
S1	401	3.091	0.002	H-1 → L (76%), H → L (23%)		
S2	381	3.244	0.190	H-1→L+1(41%), H→L+2(31%)		

S3	380	2.258	0.010	H-1→L+1 (21%), H→L (37%)
S4	378	3.372	0.017	H → L 9(39%)
S5	360	3.441	0.004	H-3→L (91%)
S7	355	3.486	0.003	H-1→L+2(71%)
S8	346	3.575	0.016	H-2 → L+2(83%)
S9	346	3.576	0.009	H-3 → L+1(80%)
S12	338	3.667	0.021	H-5 → L+2(49%)
S13	337	3.703	0.066	H-2 → L (71%)
S18	325	3.805	0.020	H-7 → L+2(68)
			DT	_
S3	367	3.374	0.165	H-1→L+2(51%)
S2	401	3.085	0.235	H→L (57%)
S4	362	3.418	0.023	H-3 → L (88%)
S5	360	3.438	0.119	H-1 → L+2(21%), H → L+2(59%)
S10	342	3.624	0.035	H-2 → L (52%)
S13	334	3.712	0.005	H-9 → L (94%)
S14	331	3.743	0.0004	H-4 → L (88%)
S19	318	3.894	0.007	H-7 → L (71%)
S20	315	3.935	0.003	H-8 → L (80%)
		1	DPM	1
S1	456	2.717	0.009	H-1→L (26%), H→L (71%)
S2	454	2.730	0.003	H-1→L (73%), H→L (25%)
S3	446	2.777	0.161	H → L+1 (78%)
S4	442	2.802	0.078	H-1→L+2(83%)
S5	410	3.016	0.0004	H → L+2(92%)
S6	403	3.047	0.0004	H-1 → L+2(93%)
S7	398	3.112	0.051	H-2 → L+1(62%)
S8	396	3.129	0.008	H-3 → L (81%)
S10	392	3.149	0.057	H-3 → L+2(80%)
S11	360	3.438	0.001	H-3 → L+1(96%)
S13	338	6.658	0.035	H-4 ─> L (95%)
		1	DTM	1
S1	497	2.493	0.003	H-3 → L (9%), H → L (90%)
S2	461	2.685	0.006	H-1→L (98%)
S3	439	2.820	0.001	H-3 → L (88%)
S4	410	3.023	0.156	H → L+1(91%)
S5	403	3.075	0.197	H-1→L+1 (83%)
S6	397	3.118	0.001	H-2 → L (98%)
S7	380	3.262	0.0002	H-1→L+1(90%)
S8	374	3.309	0.0002	H → L+2(95%)
S16	332	3.723	0.097	H-2 → L+1(90%)
S18	329	3.768	0.002	H-3 → L+2(96%)
S20	325	3.805	0.001	H-6 ─> L (79%)

Fig.: S12: Energy level diagram representing the dominant transitions and molecular orbitals calculated through TD-DFT calculations performed in acetonitrile via the CPCM model.

Table S6: Photo	Fable S6: Photophysical Properties of DP, DT, DPM, and DTM in several solvents.							
Compounds	DP		D	Г	DP	M	DTI	N
Solvents	λ _{abs} (max/nm)	λ _{em} (max/ nm)	λ _{abs} (max/ nm)	λ _{em} (max/ nm)	λ _{abs} (max/ nm)	λ _{em} (max/ nm)	λ _{abs} (max/ nm)	λ _{em} (max/ nm)
Toluene	358	440	353	457	368	486	360	492
CHCl₃	358	440	353	453	372	501	365	502
EtOAc	358	440	352	451	365	507	360	513
ACN	358	445	352	453	368	542	362	526
MeOH	355	450	354	462	368	555	365	550

	So	lid	Solu	ition
	UV light	Day light	UV light	Day light
DP				11
DT	10	New York		
DTM				
DPM	1			

References:

- 1 A. L. Spek, Acta Cryst., Section D 65, 2009, 2 148-155.
- 2 G.M. Sheldrick, Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8.
- 3 a) A Spek, J. Appl. Cryst., 2003, 36, 7-13. (b) Spek, A.; Utrecht University, Utrecht, The Netherlands 2008.
- 4 V. P. Sharma, V. Kumar, P. Sonker, P. Yadav, R. Singh, R. Gnanasekaran, and A. K. Tewari, *Eur JOC*, 2023, *26*, e202301109.
- 5 A. Kumar, R. Kumar, R. Dubey, M. Nidhar, I. Verma, P. Singh and A. K. Tewari, *J. Mol. Struct.*, 2023, **1288**, 135675.