### Supporting information

Pentacarbonitrile-based Efficient Near-Infrared Thermally Activated Delayed Fluorescence OLEDs via Suppressing Excited-State Structural Relaxation

Shengkai Hu,<sup>a</sup> Yang Li,<sup>a</sup> Kai Zhang,<sup>\*b</sup> Dong-Ying Zhou,<sup>\*a</sup> Liang-Sheng Liao,<sup>a</sup> and Jian Fan<sup>\*ac</sup>

<sup>a</sup> Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China

<sup>b</sup> College of Physics and Engineering, Qufu Normal University, Qufu, Shandong 273165, China

<sup>c</sup> State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, China

E-mail: 15692312996@163.com, dyzhou@suda.edu.cn, jianfan@suda.edu.cn

## **General Information**

#### Materials

All commercially available reagents were used as received unless otherwise stated. All reactions were carried out using Schlenk techniques under a nitrogen atmosphere. <sup>1</sup>H NMR spectra were measured on a Bruker 400 MHz spectrometer with tetramethylsilane (TMS) as the internal standard. Mass analyses were recorded by an Auto flex MALDI-TOF mass spectrometer.

### Thermal properties.

Thermogravimetric analysis (TGA) was performed on a TA SDT 2960 instrument at a heating rate of 10 °C min<sup>-1</sup> under nitrogen. Temperature at 5% weight loss was used as the decomposition temperature ( $T_d$ ).

### Cyclic voltammetry measurements.

Cyclic voltammetry (CV) was carried out on a CHI600 voltammetric analyzer at

room temperature with ferrocenium-ferrocene (Fc<sup>+</sup>/Fc) as the external standard. The oxidative scans were performed using 0.1 M n-Bu<sub>4</sub>NPF<sub>6</sub> (TBAPF<sub>6</sub>) in deoxygenated dichloromethane as the supporting electrolyte. A conventional three-electrode configuration consisting of a Pt-wire counter electrode, an Ag/AgCl reference electrode, and a Glassy-Carbon working electrode was used. The cyclic voltammograms were obtained at a scan rate of 0.1 V s<sup>-1</sup>.

## Calculation formulas for the photophysical parameters

$$k_{F} = \Phi_{F}/\tau_{F}$$

$$\Phi_{PL} = k_{F}/(k_{F} + k_{IC})$$

$$\Phi_{F} = k_{F}/(k_{F} + k_{IC} + k_{ISC})$$

$$\Phi_{ISC} = k_{ISC}/(k_{F} + k_{IC} + k_{ISC})$$

$$k_{TADF} = \Phi_{TADF}/(\Phi_{ISC}\tau_{TADF})$$

$$k_{RISC} = k_{F}k_{TADF}\Phi_{TADF}/(k_{ISC}\Phi_{F})$$

$$\Phi_{TADF}/\Phi_{F} = (\Phi_{ISC}\Phi_{RISC})/(1 - \Phi_{ISC}\Phi_{RISC})$$

 $\Phi_{PL}$  is the total fluorescence quantum yield;  $\Phi_F$  is the prompt fluorescent component of  $\Phi_{PL}$ ;  $\Phi_{TADF}$  is the delayed fluorescent component of  $\Phi_{PL}$ ;  $\tau_F$  is the lifetime of prompt fluorescent;  $\tau_{TADF}$  is the lifetime of TADF;  $k_F$  is the rate constant of fluorescent;  $k_{IC}$  is the rate constant of internal conversion;  $k_{TADF}$ ,  $k_{ISC}$ ,  $k_{RISC}$  are the rate constants of TADF, intersystem crossing and reverse intersystem crossing, respectively;  $\Phi_{ISC}$  and  $\Phi_{RISC}$  are the quantum efficiencies of ISC and RISC process, respectively.

## Photophysical measurements.

UV–Vis absorption spectra were recorded on a Hitachi U-3900 spectrophotometer. PL spectra and phosphorescent spectra were recorded on a Hitachi F-4600 fluorescence spectrophotometer. PL spectra were recorded on a Hitachi F-4600 fluorescence spectrophotometer with default collection intervals. Transient fluorescence decays in films were tested using Edinburgh Instruments FLS980 spectrometer. The absolute PL quantum yields were recorded on a Hamamatsu Quantaurus-QY quantum yield spectrometer (C13534-11).

### **Theoretical calculation**

The polarized continuum model (PCM) method is used to evaluate the photophysical properties of TPA-5CN and TPA-2N in toluene. For the quantum mechanics calculations, the optimization followed the restricted Kohn–Sham (KS) DFT process, while for singlet excited state, the time-dependent density functional theory

(TD-DFT) optimizations are carried out using the restricted KS determinant as reference. In addition, unrestricted KS (UKS) ground state calculations are performed to study the triplet excited state. The PBE0-1/3 is adopted in all the following quantum mechanics calculations in the work. Besides, the 6-31G\* basis set is used. All the calculations above are carried out in the Gaussian 16 package.<sup>[1]</sup> In addition, the transition dipole moment vector is achieved using the wave function analysis software Multiwfn.<sup>[2]</sup> The normal mode reorganization energies is achieved using the MOMAP (Molecular Materials Property Prediction Package) program.

### Device fabrication and measurement of EL characteristics

The OLEDs were prepared with the configuration of ITO/HAT-CN(10 nm)/TAPC(50 nm)/TCTA(10 nm)/CBP: dopant (1-10 wt%) (20 nm)/B4PyMPM (65 nm)/Liq(2 nm)/Al(100 nm). The ITO glass substrates were degreased ultrasonically in alternate baths of alcohol and de-ionized water; then they were dried in an oven and treated by ultraviolet ozone for 15 minutes. Finally, followed by being loaded into an evaporator, the devices were fabricated under a high vacuum of  $4 \times 10^{-6}$  Torr. The evaporation rates were controlled with oscillating quartz crystals. The deposition rates are 0.5-2 Å s<sup>-1</sup> for transporting organic layers, 0.02-0.1 Å s<sup>-1</sup> for ultrathin emitting layers, 0.1 Å s<sup>-1</sup> for Liq layer and 3-6 Å s<sup>-1</sup> for Al cathode film, respectively. The current-voltage characteristics were measured with a computer-controlled Keithley 2400 source meter. Electroluminescence spectra were measured with a Photo Research SpectraScan PR 745 Photometer, which can detect spectral region of 380-1080 nm. All the measurements were carried out under ambient atmosphere at room temperature. The EQE values are calculated on the assumption of a Lambertian angular distribution of the EL intensity.



Scheme S1. Synthetic route of TPA-5CN, TPA-2N, TPA-N and TPA-1,10-2N.

### 1,2-dibromo-4,5-bis(bromomethyl)benzene (4Br)

1,2-Dibromo-4,5-dimethylbenzene (4.1 g, 15.53 mmol), NBS (6.08 g, 34.16 mmol), and BPO (188 mg, 0.78 mmol) were added to anhydrous CCl<sub>4</sub> (50 mL). The reaction mixture was stirred at 90 °C for 3 hours. After cooling down to room temperature, the precipitate was removed by filtration and the filtrated was washed with water (3 × 20 mL) and extracted with dichloromethane (3 × 20 mL). The combined organic portions were dried over anhydrous MgSO<sub>4</sub>. The organic solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel with hexane as eluent to give 4Br (6.1 g, 93%) as a white solid.<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (s, 2H), 4.53 (s, 4H).

#### 2,2'-(4,5-dibromo-1,2-phenylene)diacetonitrile (2Br2CN)

To a solution of 4Br (3.17 g, 7.6 mmol) in MeCN (30 mL), TMSCN (2.67 mL, 21.33 mmol) was added at 0 °C. After stirring for 5 minutes, TBAF (21 mL, 1M in THF, 21 mmol) was added dropwise. The mixture was allowed to warm to room temperature and stirred for 24 h at N<sub>2</sub>. After the removal of MeCN, the residue was extracted with DCM and dried over MgSO<sub>4</sub>. The crude compound was purified by column chromatography on silica gel (hexane/EA = 3:1) to give 2Br2CN (820 mg, 38%) as a light yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (s, 2H), 3.72 (s, 4H).

# 4-(tert-butyl)-N-(4-(tert-butyl)phenyl)-N-(4-(trimethylstannyl)phenyl)aniline (TPA-Sn)

To a solution of 4-bromo-N,N-bis(4-(tert-butyl)phenyl)aniline (4 g, 9.17 mmol) in THF (40 mL), n-BuLi (5.5 mL, 2.5 M in THF, 13.76 mmol) was added at -78 °C under N<sub>2</sub>. After stirring for 4 hours, Me<sub>3</sub>SnCl (13.76 mL, 1 M in THF, 13.76 mmol) was added into the reaction mixture. After stirring for at room temperature for 24 hours, the reaction was quenched with H<sub>2</sub>O and extracted with DCM. After the removal of organic solvent, the crude product was used in the next step without any further purification (3.8 g, 80%).

## 2,2'-(4'-(bis(4-(tert-butyl)phenyl)amino)-6-bromo-[1,1'-biphenyl]-3,4diyl)diacetonitrile (TPA-Br)

2Br2CN (1 g, 3.18 mmol), TPA-Sn (1.66 g, 3.19 mmol), (PPh<sub>3</sub>)<sub>2</sub>PdCl<sub>2</sub>(223 mg, 0.32 mmol), and LiCl (669 mg, 15.93 mmol) were added into a mixture of toluene (25 mL)/DMF(5 mL) under nitrogen. The mixture was stirred at 110 °C overnight. After cooling to room temperature, the precipitate was removed by filtration. The reaction mixture was diluted with water (20 mL) and extracted with dichloromethane (3 × 20 mL). The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (hexane/EA = 3:1 ) to give TPA-Br (350 mg, 19%) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (s, 1H), 7.43 (s, 1H), 7.34-7.28 (m, 4H), 7.25-7.20 (m, 2H), 7.13-7.04 (m, 6H), 3.76 (d, J = 6.8 Hz, 4H), 1.33 (s, 18H).

# 11-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-3,6,12tribromobenzo[f]tetraphene-9,14-dicarbonitrile (TPA-3Br)

To a solution of TPA-Br (600 mg, 1.02 mmol) and 3,6-dibromophenanthrene-9,10-dione (372 mg, 1.02 mmol) in DMF (30 mL), *t*-BuNa (146 mg, 1.52 mmol) was added in small portions. The reaction mixture was stirred at room temperature for 2.5 h. After quenching with excess water, a green solid was isolated by filtration and was used in the next step without any further purification due to the poor solubility (800 mg, 85.5%).

# 12-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)benzo[f]tetraphene-3,6,9,11,14pentacarbonitrile (TPA-5CN)

CuCN (311 mg, 3.47 mmol) and TPA-3Br (800 mg, 0.87 mmol) were added into anhydrous NMP (30 mL). The reaction mixture was stirred at 180 °C for 48 h under N<sub>2</sub>. After cooling to room temperature, the mixture was washed with aqueous FeCl<sub>3</sub>. The precipitate was collected by filtration and washed with water. The crude product was purified by column chromatography on silica gel with DCM to give TPA-5CN (200 mg, 30%) as a green solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  9.51 (dd, J = 8.3, 3.4 Hz, 2H), 9.10 (s, 1H), 8.81 (s, 2H), 8.68 (s, 1H), 8.09-8.02 (m, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.39 -7.32 (m, 4H), 7.22-7.12 (m, 6H). MALDI-TOF-MS: m/z calcd for C<sub>53</sub>H<sub>38</sub>N<sub>6</sub>: 758.316, found: 758.298.

#### 11-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-12-bromonaphtho[2,3-

#### f][4,7]phenanthroline-9,14-dicarbonitrile (TPA-2N-Br)

TPA-2N-Br was prepared with the similar procedure of TPA-3Br (600 mg, 66%).

# 12-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)naphtho[2,3-f][4,7]phenanthroline-9,11,14-tricarbonitrile (TPA-2N)

TPA-2N was prepared with the similar procedure of TPA-5CN as a black solid (180 mg, 32%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.33 (s, 1H), 9.21 – 9.14 (m, 2H), 8.93 (s, 1H), 8.84 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.35 (d, *J* = 7.8 Hz, 4H), 7.18 (dd, *J* = 14.2, 7.6 Hz, 6H). MALDI-TOF-MS: m/z calcd for C<sub>53</sub>H<sub>38</sub>N<sub>6</sub>: 710.316, found: 710.297.

# 11-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-12-bromobenzo[h]naphtho[2,3f]quinoline-9,14-dicarbonitrile (TPA-N-Br)

TPA-N-Br was prepared with the similar procedure of TPA-3Br as a red solid (360 mg, 66%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.74 (ddd, J = 8.4, 3.2, 1.5 Hz, 1H), 9.42 (ddd, J = 8.1, 3.3, 1.3 Hz, 1H), 9.31 – 9.24 (m, 1H), 9.04 (dd, J = 4.4, 1.5 Hz, 1H), 8.96 (d, J = 14.2 Hz, 1H), 8.55 (d, J = 14.5 Hz, 1H), 7.92 – 7.78 (m, 2H), 7.65 (dt, J = 8.7, 4.5 Hz, 1H), 7.48 – 7.39 (m, 2H), 7.38 – 7.30 (m, 4H), 7.21 – 7.11 (m, 6H), 1.35 (s, 18H).

# 11-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)benzo[h]naphtho[2,3-f]quinoline-9,12,14-tricarbonitrile (TPA-N)

TPA-N was prepared with the similar procedure of TPA-5CN as a red solid (210 mg, 75.3%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.75 (ddd, J = 8.5, 3.5, 1.5 Hz, 1H), 9.46 – 9.39 (m, 1H), 9.29 (dt, J = 7.8, 2.0 Hz, 1H), 9.12 – 9.03 (m, 2H), 8.67 (d, J = 14.0 Hz,

1H), 7.89 (dtdd, *J* = 22.6, 7.6, 5.6, 1.6 Hz, 2H), 7.67 (ddd, *J* = 8.5, 4.4, 2.7 Hz, 1H), 7.62 (dd, *J* = 8.7, 1.8 Hz, 2H), 7.39 – 7.30 (m, 4H), 7.23 – 7.13 (m, 6H), 1.35 (s, 18H).

# 11-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-12-bromonaphtho[2,3f][1,10]phenanthroline-9,14-dicarbonitrile (TPA-1,10-2N-Br)

TPA-1,10-2N-Br was prepared with the similar procedure of TPA-3Br as a red solid (260 mg, 50%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.86 (ddd, J = 8.5, 3.2, 1.5 Hz, 2H), 9.27 (dd, J = 4.4, 1.5 Hz, 2H), 9.01 (s, 1H), 8.58 (s, 1H), 7.80 (dt, J = 8.8, 4.6 Hz, 2H), 7.49 – 7.40 (m, 2H), 7.38 – 7.32 (m, 4H), 7.20 – 7.11 (m, 6H), 1.34 (s, 18H).

### 12-(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)naphtho[2,3-

### f][1,10]phenanthroline-9,11,14-tricarbonitrile (TPA-1,10-2N)

TPA-1,10-2N was prepared with the similar procedure of TPA-5CN as a red solid (140 mg, 47.1%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.86 (ddd, J = 8.5, 2.8, 1.5 Hz, 2H), 9.30 (td, J = 4.1, 1.4 Hz, 2H), 9.12 (s, 1H), 8.71 (s, 1H), 7.82 (ddd, J = 8.5, 4.4, 2.6 Hz, 2H), 7.66 – 7.58 (m, 2H), 7.40 – 7.32 (m, 4H), 7.21 – 7.08 (m, 6H), 1.35 (s, 17H).



Figure S1 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of 2Br-2CN.



Figure S2 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of TPA-3Br.



Figure S3 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of TPA-5CN.



Figure S4 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of TPA-2N.



Figure S5 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of TPA-N-Br.



Figure S6 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of TPA-N.



Figure S8 <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) of TPA-1,10-2N.



Figure S9 MALDI-TOF mass spectrum of TPA-5CN.



Figure S10 MALDI-TOF mass spectrum of TPA-2N.



Figure S11 MALDI-TOF mass spectrum of TPA-1,10-2N.



Figure S12 MALDI-TOF mass spectrum of TPA-N.



Figure S13 TGA curves of TPA-5CN and TPA-2N at a heating rate of 10  $^{\circ}$ C/min under N<sub>2</sub>.



Figure S14 Cyclic voltammograms of TPA-5CN and TPA-2N.



Figure S15 PL spectra of a dilute solution of TPA-1,10-2N (a) and TPA-N (b) in toluene ( $10^{-5}$  M) and doped films (3 wt%).

| Compounds   | $\lambda_{em}^{tol a)}(nm)$ | $\lambda_{em}^{\rm filmb)}(nm)$ | $\Delta\lambda (nm)^{b}$ |  |  |  |
|-------------|-----------------------------|---------------------------------|--------------------------|--|--|--|
| TPA-5CN     | 822                         | 751                             | 71                       |  |  |  |
| TPA-2N      | 698                         | 670                             | 28                       |  |  |  |
| TPA-1,10-2N | 749                         | 695                             | 54                       |  |  |  |
| TPA-N       | 729                         | 681                             | 48                       |  |  |  |

Table S1 Summary of the photoluminescence emission peaks of TPA-5CN, TPA-2N, TPA-1,10-2N, TPA-N in toluene and CBP doped films.

<sup>a)</sup> Measured in toluene solution ( $10^{-5}$  M) at 298 K.

<sup>b)</sup> Measured in doped films (3 wt% in CBP) at 298 K.

<sup>c)</sup> 
$$\Delta \lambda = \lambda_{em}^{tol} - \lambda_{em}^{film}$$
.



Figure S16 Transient PL decay curves of PF (a) and DF (b) components for TPA-5CN and TPA-2N in 3 wt% doped CBP films at 298 K.

| Compound | $\Phi_{PL}$ | $\Phi_F/\Phi_{TADF}$ | $	au_{\mathrm{F}}$ | $	au_{TADF}$ | $k_{\rm F}$     | $k_{IC}$        | $k_{ISC}$       | $\mathbf{k}_{\mathrm{TADF}}$ | k <sub>RISC</sub> | $\Phi_{\rm ISC}$ |
|----------|-------------|----------------------|--------------------|--------------|-----------------|-----------------|-----------------|------------------------------|-------------------|------------------|
|          | [%]         | [%]                  | [ns]               | [µs]         | $[10^7 s^{-1}]$ | $[10^7 s^{-1}]$ | $[10^7 s^{-1}]$ | $[10^{5}s^{-1}]$             | $[10^4 s^{-1}]$   | [%]              |
| TPA-5CN  | 20.0        | 5.42/14.58           | 11.04              | 4.34         | 0.49            | 1.96            | 6.60            | 0.46                         | 0.92              | 72.9             |
| TPA-2N   | 64.5        | 30.34/34.16          | 27.86              | 5.29         | 1.09            | 0.60            | 1.90            | 1.22                         | 7.85              | 53.0             |

Table S2Photophysical characteristics of TPA-5CN and TPA-2N in CBP (3 wt% doped film).

a) Measured at 298 K.

 $\Phi_{PL}$  is the total fluorescence quantum yield;  $\Phi_F$  is the prompt fluorescent component of  $\Phi_{PL}$ ;  $\Phi_{TADF}$  is the delayed fluorescent component of  $\Phi_{PL}$ ;  $\tau_F$  is the lifetime of prompt fluorescent;  $\tau_{TADF}$  is the lifetime of TADF;  $k_F$  is the rate constant of fluorescent;  $k_{IC}$  is the rate constant of internal conversion;  $k_{TADF}$ ,  $k_{ISC}$ ,  $k_{RISC}$  are the rate constants of TADF, intersystem crossing and reverse intersystem crossing, respectively;  $\Phi_{ISC}$  and  $\Phi_{RISC}$  are the quantum efficiencies of ISC and RISC process, respectively.



Figure S17 Molecular structures of the materials employed in the devices.



Figure 18. EL spectra of the TPA-5CN based devices at different luminance.



Figure S19. EL spectra of the TPA-2N based devices at different luminance.





Figure S20 (a) Normalized EL spectra curves of the TPA-5CN based devices. (b) Current efficiency- current density characteristics of the TPA-5CN based devices. (c) EQE-luminance characteristics of the TPA-5CN based devices. (d) The current density-voltage-luminance curves of OLEDs based on TPA-5CN at different doping ratios.





(cFigure S21 (a) Normalized EL spectra cutd)es of the TPA-2N based devices. (b) Current efficiency- current density characteristics of the TPA-2N based devices. (c) EQE-luminance characteristics of the TPA-2N based devices. (d) The current densityvoltage-luminance curves of OLEDs based on TPA-2N at different doping ratios.



Figure S22 The angle-resolved and polarization-resolved PL intensity measurements of TPA-5CN in CBP doped films (3 wt%).

| Emitters  | EL peak (nm) | EQE <sub>max</sub> (%) | References |
|-----------|--------------|------------------------|------------|
| TCN-TPA   | 775          | 3.2                    | 3          |
|           | 784          | 3.2                    |            |
|           | 791          | 3.1                    |            |
|           | 785          | 2.3                    |            |
| 1         | 788          | 0.4                    | 4          |
|           | 796          | 0.3                    |            |
|           | 785          | 0.51                   |            |
| AQTC-DTPA | 770          | 1.51                   | 5          |
|           | 788          | 0.76                   |            |
| DCzPBBT   | 772          | 4.06                   | 6          |
|           | 777          | 3.65                   |            |
| This work | 766          | 4.52                   |            |
|           | 796          | 2.56                   |            |

Table S3EQE summary of representative doped NIR TADF-OLEDs with EL peaks from 770 to 800 nm

References

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, 2016.

[2] T. Lu and F. Chen, J. Comput. Chem. 2012, 33, 580.

[3] J. X. Liang, Y. K. Tang, X. F. Wang, K. Zhang, Y. W. Shih, C. H. Chen, T. L. Chiu, P.

J. Li, J. H. Lee, C. K. Wang, C. C. Wu and J. Fan, J. Mater. Chem. C, 2023, 11, 6981.

[4] H. Ye, D.H. Kim, X. Chen, A.S.D. Sandanayaka, J.U. Kim, E. Zaborova, G. Canard,

Y. Tsuchiya, E.Y. Choi, J.W. Wu, F. Fages, J.-L. Bredas, A. D'Aléo, J.-C. Ribierre, C. Adachi, *Chem. Mater.* 2018, **30**, 6702.

[5] J.-F. Cheng, Z.-H. Pan, K. Zhang, Y. Zhao, C.-K. Wang, L. Ding, M.-K. Fung, J. Fan, *Chem. Eng. J.* 2022, **430**, 132744.

[6] Y.-Y. Chen, Y.-C. Kung, M. S. Wang, Y.-C. Lo, Y.-T. Chia, C.-K. Wang, D.-G. Chen, J.-T Cheng, P.-T. Chou, C. Wu, E. Li, B. Hu, W.-Y. Hung, K.-T. Wong, *Adv. Optical Mater*. 2024, **12**, 2303131.