Supporting information

Crystal structure engineering of prussian blue through double-acting chelating agent for energy storage devices

Jinbo Zhu^{a#}, Zanyu Sun^{a#}, Yuhang Wang^a, Feng Ye^a, Weihua Guo^a, Ruoxin Li^{a,b*},

Guangtao Chang a,b,c*

^a College of Textile and Clothing Engineering, Soochow University, Suzhou 215000,
 China.

^b Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China.

^c State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China.

Equal Contribution;

Corresponding Author: Guangtao Chang, Changgt@suda.edu.cn; Ruoxin Li, liruoxin@suda.edu.cn.

Fig. S1. CV curves of the first two cycles for (a) PBAsp-1, (b) PBAsp-2, (c) PBAsp-3 and (d) PBAsp-4 electrodes from 2.0 to 4.0 V at a scan rate of 0.1 mV s^{-1} .

Fig. S2. Charge and discharge curves of first three cycles for from 2.0 to 4.0 V at 50mA g⁻¹: (a) PBAsp-1, (b) PBAsp-2, (c) PBAsp-3, (d) PBAsp-4.

Fig. S3. Cycle performance of PBAsp-0; PBAsp-1; PBAsp-2; PBAsp-3 and PBAsp-4 electrodes at 500 mA g⁻¹ in the voltage range of 2.0-4.0 V.

Samples	Fe ²⁺	Fe ³⁺
PBAsp-1	31.4%	69.6%
PBAsp-2	48.5%	51.5%
PBAsp-3	58.2%	41.8%
PBAsp-4	57.0%	43.0%

Table S1. Ratio of Fe^{2+} and Fe^{3+} in all samples

 Table S2. The calculated resistance based on the Nyquist curves of as-prepared samples.

Samples	$R_{ m S}(\Omega)$	R ct (Ω)
PBAsp-1	18.18	1539
PBAsp-2	13.77	1076
PBAsp-3	11.09	963.1
PBAsp-4	4.82	215.6

Table S3. Comparison of the performance of various chelating agents for the preparation of Prussian blue.

Samples	Utilization rate	Capacity(1C)	Cycle life
this work	4.4 g	131 mAh g ⁻¹	81.81%, 450 (5C)
sodium citrate ¹	13.04 g	100 mAh g ⁻¹	71%, 500 (1C)
sodium pyrophosphate ²	26.36 g	124 mAh g ⁻¹	80.6%, 100 (1C)
EDTA ³	11.2 g	151 mAh g ⁻¹	84%, 100 (1C)

References

- 1 S. Lim, D. Choi, T. Jeong and D. Han, J. Alloys Compd., 2023, 938, 168502.
- 2 J. Peng, J. Huang, Y. Gao, Y. Qiao, H. Dong, Y. Liu, L. Li, J. Wang, S. Dou and S. Chou, *Small*, 2023, **19**, 2300435.
- 3 Z.G. Neale, C. Liu and G. Cao, Sustain. Energy Fuels, 2020, 4, 2884–2891.

Samples	Price (RMB/ton)	Utilization rate (g)	Usage cost (RMB)
aspartic acid	25000	4.4	0.11
sodium citrate	5100	13.04	0.067

Table S4. Comparison of the cost of using aspartic acid and sodium citrate.

Note: The above calculations are based on equal masses of sodium ferrocyanide, prepared to produce the same yield of Prussian blue obtained.