Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Achieving high response of perovskite-based (MAPbl₃) ammonia gas sensors at

room temperature via light enhancement.

Chih-Chien Lee,^{a,*} Ade Kurniawan,^{a,b} Johan Iskandar,^{b,c} Cheng-Shane Chu,^d Chih-Yi Liu^{b,e,**}

^a Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan

^b Organic Electronics Research Centre, Ming Chi University of Technology, New Taipei City 243303, Taiwan

^c Vocational School, Pakuan University, West Java, 16143, Indonesia

^d Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan

^eCollege of Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan

*cclee@mail.ntust.edu.tw

**liu.chihyi@mail.mcut.edu.tw

Figure. S1. Tauc plot of a typical MAPbI₃ film deposited on an ITO glass substrate.

Figure. S2. (a) Thickness of MAPbI₃ films prepared with varying concentrations of MAPbI₃ precursor solution, measured using a Bruker DektakXT profilometer. (b) Response and (c) long-term stability of gas sensors fabricated using different concentrations of MAPbI₃ precursor solution under exposure to 25 ppm NH₃.

Figure. S3. (a) Dynamic response of the MAPbI₃ gas sensor under different illumination conditions. (b) Band energy levels of the MAPbI₃ film and the photon energy peak of the LED (calculated using the energy equation $E = hc/\lambda$, where λ is the LED emission peak).

Figure. S4. I-V curves of the MAPbI₃ gas sensor under dark conditions at various relative humidity levels.

Figure. S5. Selectivity response of the MAPbl $_3$ gas sensor to 100 ppm of various gases under 100 mW/cm 2 light illumination with an applied bias of 1.5 V.

Figure. S6. Long-term stability of the MAPbI₃ gas sensor under 100 ppm NH_3 in the dark and with 100 mW/cm² UV light illumination.