Supporting Information for:

Improved voltage and solubility in non-aqueous redox flow batteries using a molecular 3,4-ethylenedioxythiophene (EDOT) derivative with stable radical cation state

Hee Kyung Hwang,^a Yejoo Park,a Jisang Yeom, Yohan Ahn,^a Yeasin Khan,^{a,b} Jeewoo Lim,^a Clément Cabanetos,^c Jung Hwa Seo,^b Je Seung Lee,^a Bright Walker^a ^aDepartment of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea ^bDepartment of Physics, University of Seoul, Seoul, 02504, Republic of Korea ^cUniv Angers, CNRS, Moltech-Anjou, SFR Matrix, F-49000 Angers, France.

E-mail: walker@khu.ac.kr, leejs70@khu.ac.kr

Figure S1. Predicted molecular volume of DBBB (3333.7 Bohr³) and *t*-Bu₂EDOT (2209.4 Bohr³).

Figure S2. UV-Vis spectrum of only *t*-Bu₂EDOT and *t*-Bu₂EDOT with HTFSI. The purple line corresponds to 50 μ M *t*-Bu₂EDOT and the pink line corresponds to 100 μ M *t*-Bu₂EDOT with 50 μ M of HTFSI. The changes in absorption spectrum are irreversible and indicate decomposition of tBu₂EDOT in the presence of acid.

Figure S3. ¹³CNMR spectrum of *t*Bu₂EDOT.

Figure S5. Mass spectrum of tBu_2EDOT . The named compound corresponds to the best fit for the observed spectrum among previously reported compounds, however, *t*-Bu₂EDOT has not been reported before.

Figure S6. Cyclic voltammograms of DBBB (10 mM) and *t*-Bu₂EDOT (10 mM) using a lithium reference electrode under an Ar atmosphere in 100 mM LiTFSI in propylene carbonate. (a) DBBB and (b) *t*-Bu₂EDOT at different scan rates; (c) DBBB and (d) *t*-Bu₂EDOT over 200 scan cycles. (e) DBBB vs. *t*-Bu₂EDOT at a scan rate of 100 mV/s. (f) Ferrocene vs. *t*-Bu₂EDOT at a scan rate of 100 mV/s.

Figure S7. Cyclic voltammograms of 10 mM DBBB (a) and 10 mM *t*-Bu₂EDOT (b) using 100 mM LiTFSI/PC as an electrolyte solution over a wide potential range. Scans of electrolyte only are included for comparison.

Figure S8. Cyclic voltammograms of 13 mM 3,4-ethylenedioxythiophene (EDOT) dissolved in 100 mM LiTFSI/PC solution over variable numbers of cycles.

Figure S9. Calibration curves and Beer-Lambert fits of concentration vs absorbance for (a) DBBB, (b) *t*-Bu₂EDOT.

Fig. S10. UV-vis absorbance of t-Bu₂EDOT (black line) and DBBB (red line) solutions (50 μ M) in PC.

Figure S11. Redox flow cell design. (a) Diagram showing components. (b) Photograph showing assembled cell. (c) Diagrams showing dimensions (in mm) of spacer, housing and current collector.

Figure S12. Charging and discharging curves for the battery containing electrolyte only.

Figure S13. Battery characteristics of (a - d) DBBB and (e-h) tBu₂EDOT at at 2 mM (a, c, e, g) and 5 mM (b, d, f, h) concentration. Capacity and efficiency over repeated charge cycles are shown in (a, b, e, f) and representative charge / discharge curves (voltage vs charge capacity) are shown in (c, d, g, h).

Figure S14. Crossover experiment involving running the flow cell with an initial concentration of 10.0 mM in the catholyte reservoir and 0 mM concentration in the anolyte reservoir, without charging. Anolyte concentration vs time data are shown for of (a) DBBB and (b) t-Bu₂EDOT, which were calculated from changes in UV-vis spectra of aliquots taken from the anolyte side using a volumetric micropipette. The data show that both DBBB and t-Bu₂EDOT cross the separator membrane to the anolyte side over the course of several hours.

Figure S15. Rapid charge/discharge tests. Catholytes were prepared by using 1 mM DBBB (a) and 1 mM *t*-Bu₂EDOT (b), (c), (d) with 0.5 M LiTFSI in PC. Cells were charged and discharged at 4 % of theoretical capacity at a current density was of 1.25 μ A/cm². In (a), (b) and (c), Tygon-LFL tubing is used, while Viton is used in (d). (b) Shows a close-up of voltage vs time plots for several charge / discharge cycles for *t*-Bu₂EDOT, corresponding to the efficiencies shown in plot (c).

Figure S16. Battery tests using anion exchange membranes. (a) Charging / discharging characteristics using Selemion AMVN anion exchange membrane. (b) Charging / discharging characteristics using Fumasep FAP-450 anion exchange membrane.