Supplementary Information

Abnormal Electronic Transport Properties with Hall Effect, Magneto-resistivity, and Phase Diagram in CaFeAsF Single Crystal

Yongqiang Pan^{1,+}, Nan Zhou^{1,+}, Wei Zhou^{2,+}, Tianyang Wang¹, Qiang Hou³, Run Lv¹, Ming Cheng¹, Ruihuan Lan¹, Yifan Deng¹, Yu Zhao¹, Lanxin Liu¹, Wenhai Song¹, Yue Sun³, Zhixiang Shi³, Wenjian Lu¹, Xuan Luo^{1,*}, Yuping Sun^{1,4,5}

¹Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China

²Advanced Functional Materials Lab and Department of Physics, Changshu Institute of Technology, Changshu 215500, People's Republic of China

³School of Physics and Key Laboratory of the Ministry of Education, Southeast University, Nanjing 211189, China

⁴Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, HFIPS, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China

⁵Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China

	Table S1 Elements percentage from EDS			
	Elements	Weight	Ator	micity
		Percentage	Perc	centage
	F	16.46	37.3	3
	Са	18.95	20.3	7
	Fe	26.20	20.2	2
	As	38.39	22.0	18
	Total	100.00		
	Table S2			
6µm 电子图像 1	ICP atomic emission spectroscopy			
	Method Name: 2024-Ca-Fe-As-2024.12.4			12.4
	Analyst Name:	admin		
0	Acquire Date:	2024/12/4 10:31:57		
•	Elem	Flags	Avg	Units
	As1937		2.445	ppm
e Te	Ca3179		2.191	ppm
) 2 4 6 8 10 12 14 毎日日 3555 ctn 半行: 14 011 (5 ctn) ka) (Fe2599		1.970	ppm

SFig. 1. The surface picture of CaFeAsF single crystal. The elements percentage measured by EDS are shown in Table. S1. The elements percentage proportion measured by ICP are shown in Table. S2.

SFig.2. The magnetic field dependent Hall conductivity at T = 3 K, 10 K, 13 K, 15 K, 17 K, 20 K, 25 K, 40 K, 60 K, 80 K, and 100 K. The fit results by two-band model and single-band model are plotted by red and purple solid curves, respectively.

SFig.3. The MR% scaled by Kohler rule with H/ρ_0 .

SFig. 4. The magnetic field dependent, angle-scaled *B* dependent, and anisotropy-scaled *B* dependent MR% with angles $\theta = 0^{\circ}$, 15°, 30°, 45°, 60°, 75°, and 90°, which with temperatures at 5 K - 100 K.