Supporting Information

One-dimensional Cu-Ni Core-shell Composites as Liquid Epoxy Molding Compound Fillers for Enhanced Heat Dissipation and Electromagnetic Interference Shielding in High-bandwidth Memory

Minkyu Kang,^{a‡} Minjun Bae,^{a‡} Sungho Cho,^a Yonghwan Kim,^a Kanghun Kim,^a Jonghyock Park,^a Won Young An,^a Dohyeong Kim,^a Yujin Chang,^a Kyurim Kim,^a Shuqing Piao,^a Yongyeol Park,^a and Yuanzhe Piao^{a,b,*}

^a Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, 16229 Suwon-si, Gyeonggi-do, Republic of Korea.

^b Advanced Institutes of Convergence Technology, Seoul National University, 16229 Suwonsi, Gyeonggi-do, Republic of Korea

[‡] These authors contributed equally to this work.

Corresponding authors

* Yuanzhe Piao. E-mail: parkat9@snu.ac.kr

Fig. S1. Schematic diagram of the synthetic methods for 1D CS-CN nanoparticles.

Fig. S2. Case study on the morphology of the resulting CS-CN nanoparticles under various experimental conditions as detailed in Table S1.

Fig. S3. Schematic illustration of the morphological changes in CS-CNNW and CS-CNNK.

Fig. S4. (a) Time-dependent digital images of reactant mixtures after N_2H_4 injection and (b) digital image of as-synthesized CS-CNNK particles attracted to a magnet.

Fig. S5. (a) TEM images of (a) CS-CNNW and (b) CS-CNNK.

Fig. S6. EDS mapping images of (a) CS-CNNW and (b) CS-CNNK.

Fig. S7. BJH results for CS-CNNW and CS-CNNK.

Fig. S8. XPS survey spectra of CS-CNNW and CS-CNNK.

Fig. S9. Comparison plot of thermal conductivity enhancement, as shown in Table S5.

Fig. S10. TGA results for CS-CNNW and CS-CNNK.

Sample	Base solution	Molarity (M)	Cu precursor	Ni precursor	Reductant injection type	Yield	Morphology
S1	NaOH	7	Cu(NO ₃) ₂ · 3H ₂ O	Ni(NO ₃) ₂ · 6H ₂ O	Mixing	61%	CS-CNNW (non-uniform)
★S2	NaOH	7	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	Mixing	84%	CS-CNNW (uniform)
S3	NaOH	7	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	One shot	92%	CS-CNNK (non-uniform)
S4	КОН	7	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	Mixing	71%	Nanoroad
S5	КОН	4	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	One shot	54%	CS-CNNW (non-uniform)
S6	КОН	7	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	One shot	77%	Nanoroad
S7	КОН	10	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	One shot	62%	CS-CNNK (non-uniform)
★S8	КОН	15	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	One shot	88%	CS-CNNK (uniform)
S9	КОН	15	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	Mixing	79%	CS-CNNK
S10	NaOH	15	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	Mixing	60%	Nanoparticle
S11	NaOH	15	CuCl ₂ ·2H ₂ O	NiCl ₂ ·6H ₂ O	One shot	33%	Nanoparticle

Table S1. Case study for the morphology and yield optimization of 1D CS-CN nanoparticles.

Sample	M _s (emu g ⁻¹)	H _c (Oe)	M _r (emu g ⁻¹)
CS-CNNW	33.92	222.52	9.58
CS-CNNK	36.71	225.82	6.35

Table S2. Magnetic properties of CS-CNNK and CS-CNNW obtained from VSM analyses.

Table S3. Specific surface area and pore volume of CS-CNNW and CS-CNNK obtainedfrom BET and BJH analyses.

Sample	Volume adsorbed (cm ³ g ⁻¹)	Surface area (m ² g ⁻¹)	Average pore diameter (nm)
CS-CNNW	0.37	1.6103	17.765
CS-CNNK	0.6552	2.8519	19.083

Component	Size (x,y,z) (nm)	Material	Thermal conductivity (W m ⁻¹ K ⁻¹)	
Substrate	20, 20, 0.75	FR4	0.294	
Base (Logic) die	10.8, 9.8, 0.06	Si	148	
Base die bump gap	0.053	Solder + underfill	48	
Core die	10.5, 9.5, 0.05	Si	148	
Top die	10.5, 9.5, 0.05	Si	148	
Core die gap	0.015	LMC	1.2 / 1.55 / 1.46	
TSV diameter	0.015	Cu	400	
Heat spreader 10.8, 9.8, 3		Al	237.5	

Table S4. Details for HBM thermal simulations.

	N <i>A</i> • 1	Diameter (nm)	Length (um)	Thermal conductivity (w/m·k)			D f
Matrix	Material			0wt%	1wt%	Enhancement	- Kei.
LMC	CS-CNNW	250	20	1.2	1.55	29.2%	This
LMC	CS-CNNK	250	20	1.2	1.46	21.7%	work
Epoxy	Ag NWs	110	<50	0.18	0.23	27.8%	S 1
Ероху	SiC NWs	190	120	0.22	0.28	27.3%	S2
Epoxy	Al ₂ O ₃ -NWs	5	0.1	0.21	0.215	2.4%	S3
Ероху	TiO ₂ NWs	50	5	0.166	0.173	4.2%	S4
Epoxy+ AlN filler	Si ₃ N ₄ NWs	100	20	0.73	0.9	23.3%	S5
PDMS	Ag NWs	500	20	0.33	0.34	3.0%	S6
Ероху	SiC NW+Graphene	75	<10	0.2	0.236	18.0%	S7
PI	SiC NW+Graphene	20	10	0.15	0.2	33.3%	S 8

Table S5. Comparison of thermal conductivity enhancement with different fillers in LMC and
 epoxy matrix materials at 1 wt.%.

Supplementary references

- S1. L. Zhang, W. Zhu, G. Qi, H. Li, D. Qi and S. Qi, *Polymers*, 2022, 14, 3539.
- S2. D. Shen, Z. Zhan, Z. Liu, Y. Cao, L. Zhou, Y. Liu, W. Dai, K. Nishimura, C. Li and C.-T. Lin,
 N. Jiang and J. Yu, *Sci. rep.*, 2017, 7, 2606.
- S3. L. Huang, X. Lv, Y. Tang, G. Ge, P. Zhang and Y. Li, *Polymers*, 2020, **12**, 2126.
- Q. Xie, Y. Cheng, S. Chen, G. Wu, Z. Wang and Z. Jia, *J. Mater. Sci. Mater. Electron.*, 2017, 28, 17871-17880.
- S5. B. Wang, S. Wan, M. Niu, M. Li, C. Yu, Z. Zhao, W. Xuan, M. Yue, W. Cao and Q. Wang, *Polymers*, 2023, 15, 4429.
- S6. Z. Huang, W. Wu, D. Drummer, C. Liu, Y. Wang and Z. Wang, *Polymers*, 2021, 13, 248.
- S7. Y. Wang, J. Yu, W. Dai, D. Wang, Y. Song, H. Bai, X. Zhou, C. Li, C.-T. Lin and N. Jiang, *RSC Adv.*, 2014, 4, 59409-59417.
- S8. W. Dai, J. Yu, Z. Liu, Y. Wang, Y. Song, J. Lyu, H. Bai, K. Nishimura and N. Jiang, *Composites Part A*, 2015, 76, 73-81.