Supplementary information

A superhard and superdense carbon allotrope with all-*sp*³ bonded helical chains of five-membered rings

Yuan Tang, ^a Meng Hu, ^{*a} Wenyuan Zhang, ^a Jiwei Pang, ^a Mengdong Ma, ^b Penghui Li, ^{cd} Julong He^c and Jianning Ding ^{ae}

^a School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.

^b State Key Laboratory of Crane Technology, Yanshan University, Qinhuangdao 066004, China

^c Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

^d Center for X-mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China.

^e School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China

*E-mail address: humeng@ujs.edu.cn (M. Hu).

The crystallographic information file (CIF) for the T-C₁₀ crystal structure

data_T-C₁₀ _audit_creation_date 2024-10-30 audit creation method 'Materials Studio' _symmetry_space_group_name_H-M 'P42/N' symmetry Int Tables number 86 _symmetry_cell_setting tetragonal loop_ _symmetry_equiv_pos_as_xyz x,y,z -x,-y,z -y+1/2,x+1/2,z+1/2 y+1/2,-x+1/2,z+1/2 -x+1/2,-y+1/2,-z+1/2 x+1/2,y+1/2,-z+1/2 y,-x,-z -y,x,-z _cell_length_a 2.7846 _cell_length_b 2.7846 _cell_length_c 7.0642 _cell_angle_alpha 90.0000 _cell_angle_beta 90.0000 _cell_angle_gamma 90.0000 loop atom site label _atom_site_type_symbol atom site fract x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy C1 C 0.84986 0.27122 0.84772 0.00000 Uiso 1.00 0.00000 0.00000 0.50000 0.00000 Uiso 1.00 C2 С loop _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry 2 _ccdc_geom_bond_type 1.726 2_755 S C1 C1 C1 C1 1.524 2_765 S C1 C2 1.585 3 S C1 C1 1.493 5_656 S C2 C1 1.585 3 544 S C2 C1 1.585 4 454 S C2 C1 1.585 6_446 S C2 C1 1.585 5 556 S

To verify the consistency of the results obtained from different calculation methods, we performed geometry optimization and property characterization on T-C₁₀ using both CASTEP and VASP. As shown in Table S1, the lattice parameters optimized by CASTEP and VASP are identical, and the corresponding elastic constants demonstrate excellent agreement. Additionally, the band gap of T-C₁₀ simulated with CASTEP is 3.31 eV (Fig. S2), which is in close agreement with the 3.34 eV obtained from VASP calculations (Fig. 2e). We also used CASTEP to calculate the stress-strain curves of T-C₁₀ along specific crystal orientations (Fig. S3). The tensile strengths of T-C₁₀ along the [001] and [100] directions were found to be 132.2 and 26.0 GPa, respectively, with corresponding strains of 0.21 and 0.06, which match the values obtained from VASP calculations.

Structure	Methods	Lattice	<i>C</i> ₁₁	<i>C</i> ₁₂	<i>C</i> ₁₃	<i>C</i> ₁₆	<i>C</i> ₃₃	<i>C</i> ₄₄	C ₆₆
T-C ₁₀	VASP	<i>a=b=</i> 2.78, <i>c</i> =7.06	798.1	125.1	115.2	-57.9	1302.1	553.5	482.3
	CASTEP	<i>a=b=</i> 2.78 <i>, c=</i> 7.06	785.3	117.2	108.0	-57.8	1289.6	549.9	475.7

Table S1. The lattice constants *a*, *b*, and *c* (Å) and elastic constants C_{ij} s (GPa) of T-C₁₀ by different calculation methods.

Fig. S1 The total energy as a function of volume per atom for $T-C_{10}$ in comparison with other superhard carbon allotropes.

Fig. S2 Electronic band structure of $T-C_{10}$, calculated using the LDA functional implemented in the CASTEP code. The conduction band minimum (CBM) resides at the Z symmetry point, while the valence band maximum (VBM) emerges between the X and G points. The simulated band gap is 3.31 eV.

Fig. S3 Strain–stress relationships under the tensile (Tens.) deformations of $T-C_{10}$ along the crystal orientations of [001] and [100], calculated using CASTEP code.