Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Ultrasonication-Assisted Room-Temperature Synthesis of Morphology-Controlled Gallium Oxide Nanoparticles for High-Performance Photoelectronic Device Applications

Donghui Yang^a, Haishuang Hu^b, Yizhou Ni^c, Shiwei Chen^a, Chao Wu^{a*}, Kai

Chen^a, Fengmin Wu^a, Shunli Wang^a and Daoyou Guo^{a*}

AUTHOR ADDRESS

^aZhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation & Department of Physics, Zhejiang Sci-Tech University, 310018 Hangzhou, China. ^bSchool of Mathematics Information, Shaoxing University, Shaoxing 312000, China. ^cBeyond UV (Hangzhou) Incorporated, Hangzhou 310018, China. Corresponding Author: Chao Wu **E-mail:** <u>chaowu@zstu.edu.cn</u>; Daoyou Guo **E-mail:** <u>dyguo@zstu.edu.cn</u>

Figure S1 (a) XRD patterns and (b) Absorption edge of the Ga nanospheres.

Figure S2 (a) The typical XPS survey spectrum of all the samples. XPS spectra of fabricated Ga nanospheres (b) Ga 2p, (c) Ga 3d.

Figure S3 The *I-V* curves of the fabricated devices under different light power intensities (a) β -Ga₂O₃ nanospheres/ β -Ga₂O₃ thin films, (b) GaOOH nanorods/ β -Ga₂O₃ thin films, and (c) γ -Ga₂O₃ nanospheres/ β -Ga₂O₃ thin films. The *I-t* curves

of the fabricated under different voltages (d) β -Ga₂O₃ nanospheres/ β -Ga₂O₃ thin films, (e) GaOOH nanorods/ β -Ga₂O₃ thin films, and (f) γ -Ga₂O₃ nanospheres/ β -Ga₂O₃ thin films.

Figure S4 Time-dependent photocatalytic process.

Figure S5 Absorbance spectra of RhB solutions under different UV irradiation times with β -Ga₂O₃ (a) nanospheres, (b) nanorods, and (c) nanoflowers.

	E _{tot} (eV)	E _{sur} (eV)	E ₀ (eV)
H ₂ O	-386.096	-371.333	-14.2173
EDA	-436.318	-371.333	-64.0895
Oleylamine	-682.17	-371.333	-308.657

Table S1 The adsorption energy calculated by VASP.

Table S2 Specific preparation methods for nanospheres, nanorods, and nanoflowers.

Preparation condition	Pecursor solution	Morphology	Crystalline phase		
Ultrasonic time:	H ₂ O	nanorods	GaOOH		
120min	Olariamina		Ga (Annealing at 700°C to		
Ultrasonic power :	Oleylamine	nanospheres	obtain β-Ga ₂ O ₃)		
300W	H ₂ O/EDA	nanoflowers	γ-Ga ₂ O ₃		