# **Supplementary Information**

# Reduced lattice thermal conductivity and strong four-phonon scattering in h-B<sub>12</sub> assembled by boron clusters on a honeycomb lattice

Ting Zhang<sup>a</sup>, Yu-Run Yang<sup>a</sup>, Xu Liu<sup>a</sup>, Jing Wang<sup>\*a</sup>, Zhao Liu<sup>\*ab</sup>, and Ying Liu<sup>ac</sup>

<sup>a</sup> Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang, 050024, China

<sup>b</sup> Beijing Computational Science Research Center, Beijing, 100193, China

<sup>c</sup> National Key Laboratory for Materials Simulation and Design, Beijing, 100083, China

\* Corresponding author: <u>zliu@hebtu.edu.cn</u> and <u>jwang@hebtu.edu.cn</u>

## SI. Convergence calculations of $\kappa_{lat}$ about q-points.

We can see that the  $\kappa_{lat}$  of 2D *h*-B<sub>12</sub> is converged to within 5% for an increase in **q**-points beyond 90 × 90 × 1 when considering only 3ph scattering. Additionally, it is converged to within 5% for an increase in **q**-points beyond 22 × 22 × 1 when considering both 3ph and 4ph scatterings.



Fig. S1 Variation of  $\kappa_{lat}$  with different **q**-points for 2D *h*-B<sub>12</sub>, considering (a) only 3ph scattering and (b) both 3ph and 4ph scattering processes. The red arrow indicates the selected **q**-points, and the green dashed line represents a fluctuation of  $\pm 5\%$ around the converged value.

# S2. Basic information on the three structures assembled from icosahedral B<sub>12</sub> clusters.

Figure S2(a) displays the optimized 2D honeycomb structure of  $h-B_{12}$ , the triangular structure of t-B<sub>12</sub>, and the kagome structure of k-B<sub>12</sub> from left to right. All three structures are assembled from the icosahedral  $B_{12}$  clusters as the basic building unit. Table S1 lists the space group, lattice constants, atomic layer thickness, and the B-B bonding lengths for adjacent clusters after comprehensive optimization for *h*-B<sub>12</sub>, t-B<sub>12</sub>, and k-B<sub>12</sub>. Figure S2(b) shows the phonon dispersions of the three structures in Fig. S2(a), We found that only  $h-B_{12}$  has no imaginary frequencies, proving its stability. Figure S2(c) displays the band structures of three structures in Fig. S2(a) calculated using the PBE0 functional, revealing that the honeycomb  $h-B_{12}$  is an indirect bandgap semiconductor ( $\Delta = 1.07 \text{ eV}$ ), while the triangular *t*-B<sub>12</sub> and kagome  $k-B_{12}$  are metallic. Therefore, the main carriers of thermal transport in  $h-B_{12}$  are phonons. Notably, at the K point, there are two Dirac states labeled as D<sub>1</sub> (1.7 eV above the Fermi level) and D<sub>2</sub> (1.4 eV below the Fermi level). Furthermore, the group velocities at D<sub>1</sub> ( $2.75 \times 10^5$  m/s) and D<sub>2</sub> ( $1.31 \times 10^5$  m/s) are only one order of magnitude lower than the Fermi velocity in graphene,<sup>1</sup> suggesting that  $h-B_{12}$  is likely to exhibit high electrical conductivity. Additionally, h-B<sub>12</sub> exhibits a stronger spin-orbit coupling (SOC) effect compared to graphene and silicon, with a Rashba coefficient of approximately 1.8 eV/Å, which is greater than or at least comparable to that of many well-known strong SOC materials.<sup>2-6</sup> The aforementioned results can also be found in Fig. 2 of Ref. 32 in the manuscript. This work presents the thermal



transport properties of h-B<sub>12</sub>, using first-principles calculations in conjunction with the Boltzmann Transport Equation (BTE) method.

**Fig. S2** (a) Top and side views of 2D h-B<sub>12</sub> (left), t-B<sub>12</sub> (middle), and k-B<sub>12</sub> (right), with d representing the atomic layer thickness, the black rhombic dashed box indicates the unit cell. (b) Phonon dispersions of 2D h-B<sub>12</sub> (left), t-B<sub>12</sub> (middle), and k-B<sub>12</sub> (right). (c) Band structures of 2D h-B<sub>12</sub> (left), t-B<sub>12</sub> (middle), and k-B<sub>12</sub> (right). (c) Band structures of 2D h-B<sub>12</sub> (left), t-B<sub>12</sub> (middle), and k-B<sub>12</sub> (right), referenced to the Fermi energy. In the band structure of h-B<sub>12</sub>, two Dirac states are marked as D<sub>1</sub> (1.7 eV above the Fermi level) and D<sub>2</sub> (1.4 eV below the Fermi level).

| Structure                 | Space             | <b>a</b> (Å) <sup>a)</sup> | <b>b</b> (Å) <sup>a)</sup> | <b>d</b> (Å) <sup>a)</sup> | <b>B-B (Å)</b> <sup>a)</sup> |
|---------------------------|-------------------|----------------------------|----------------------------|----------------------------|------------------------------|
|                           | group             |                            |                            |                            |                              |
| <i>h</i> -B <sub>12</sub> | $P\overline{3}1m$ | 8.28                       | 8.28                       | 2.45                       | 1.71                         |
| <i>t</i> -B <sub>12</sub> | $P\overline{3}m1$ | 4.78                       | 4.78                       | 2.46                       | 1.93                         |
| k-B <sub>12</sub>         | <i>C2/m</i>       | 9.49                       | 9.20                       | 3.00                       | 1.69                         |

Table S1. The parameters of the three structures in Fig. S2(a).

a) "*a*" and "*b*" represent the lattice constants, "*d*" is the thickness of the atomic layer, and "B-B" refers to the bond length of B-B bonds connecting adjacent clusters.

#### **S3.** Three types of bonds in *h*-B<sub>12</sub>.

The unit cell of h-B<sub>12</sub> contains two mirror-symmetric B<sub>12</sub> clusters. Each B<sub>12</sub> cluster in this structure is connected to three adjacent B<sub>12</sub> clusters through two B–B bonds, with a bond length of 1.71 Å, which is in the range of B-B  $\sigma$  bonds. Within each B<sub>12</sub> cluster, six weak covalent bonds persist in the *xy* plane, with an average B-B bond length of 1.90 Å. Notably, the top/bottom-most B-triangle features a bond length of 1.60 Å.



Fig. S3 Blue represents the bonds connecting each  $B_{12}$  cluster; pink indicates the six weak covalent bonds within the *xy* plane inside the  $B_{12}$  cluster; and yellow denotes the B-B bonds formed by the top/bottom B triangles within the  $B_{12}$  cluster.

## References

- <sup>1</sup> J. R. F. Lima, Phys. Lett. A 2015, **379**, 1372.
- <sup>2</sup> Q. Liu, Y. Guo, and A. J. Freeman, Nano Lett. 2013, **13**, 5264.
- <sup>3</sup> S. Singh and A. H. Romero, Phys. Rev. B 2017, **95**, 165444.
- <sup>4</sup> F.-X. Xiang, X.-L. Wang, M. Veldhorst, S.-X. Dou, and M. S. Fuhrer, Phys. Rev. B 2015, **92**, 035123.
- <sup>5</sup> L. G. D. da Silveira, P. Barone, and S. Picozzi, Phys. Rev. B 2016, **93**, 245159.
- <sup>6</sup> A. Narayan, Phys. Rev. B 2015, **92**, 220101.